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Abstract

The use of coaches in training provides several ad-
vantages to the skill transfer process. However, their
use is limited because of cost reasons. Automatic recog-
nition processes, on the other hand, have a vastly lower
cost ratio and can replace or integrate many of the
functions otherwise performed by a human. The paper
presents an effective design of a real-time error recogni-
tion system for rowing in a simulator. It was designed in
order to be easy to develop, be computationally efficient
and offer an excellent classification ability.

1 Introduction

A coach or other human assistance in training is an

important step in transferring motor skills between sub-

jects. By collecting experience in analyzing the motion,

the coach can be viewed to adapt the role of a trained

critic in an actor-critic system, which vastly simplifies

the learning task of the rower. However, human assis-

tance is an expensive choice in training, which severely

limits the possible extent of human assistance.

Modern machine learning techniques offer a plausi-

ble alternative and/or assistance to the human coach, at

least for simple task evaluation and classification. The

process is similar in that they learn from experience, but

they are both cheaper and, in several comparisons with

humans [6] [1], more efficient at generalizing the infor-

mation gathered. On the other hand, machine learning

systems lack a priori information assisting in the train-

ing process. This limits the usefulness of some complex

data which the coach is able to use, such as raw visual

information.

Previous studies in gesture recognition mainly fo-

cus on the use of markers or accelerometers to derive

useful data for classifying the movement. In rowing

specifically a previous study uses marker based captur-

ing and commercial ergometers to test the ability to im-

itate human coaches [4], which achieved 71% - 95%

intra-subject error classification accuracy. The system

used data from rowing on an ergometer recorded with

VICON motion capturing system. In contrast, by tak-

ing advantage of modern rowing training systems, such

as the SPRINT one developed in PERCRO [5], we get

data of individual oar positions from the platform di-

rectly. This removes need for extrapolating occluded

parts of the stroke. Also the rowing experience itself is

more realistic, with two physical oar handles and a so-

phisticated virtual environment encouraging the rower

to adapt a rowing pattern more similar to that used in a

real boat.

Since the SPRINT system provides concurrent feed-

back to the user, delay is a critical issue. There are at

least three reasons for minimizing delay. The first is

that despite some studies showed some benefits in skills

learning with delayed feedback [9] [7], recent research

showed that when complex motor skills are involved,

concurrent feedback is more effective both for perfor-

mance improvement and retention [10].

2 Method

We have chosen to divide the rowing stroke into

four main phases (entry, drive, finish and recovery) and

perform error classification only once per stroke. The

phase division is the central element to our design, al-

lowing us to divide the recognition tasks evenly over the

rowing cycle, limiting the tasks to a single error classifi-

cation of each type per cycle and at the same time giving

feedback delays much shorter than a cycle.

A large number of algorithms has been used in hu-

man motion recognition. There seems to be no clear

distinction in performance between different methods in

gait recognition [8], although there is plenty of theoreti-

cal considerations [2]. On the other hand, for classifica-

tion tasks in general there are substantial comparisons

available, as summarized by [3].

Artificial neural networks was chosen because of

ease of implementation, good scaling characteristics
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and low computing costs in classification tasks. In ad-

dition, the few available comparisons including Multi-

Layer Perceptron (MLP) with regularization show ex-

cellent performance [3]. A Bayesian regularization was

deemed suitable for the task for these reasons. As train-

ing is performed offline, such a slow training method

will not affect the online simulation performance.

Expert (10 years of rowing practice), intermediate

(4± 1 years of rowing practice) and novice rowers data

were recorded on the rowing system and pre-processed.

Then the network for phase classification was trained

and test, in the end the same was done for the skying

error detection network.

The classifiers were tested on a 2.4 GHz Intel Core 2

CPU, 2GB of memory, with Windows XP, and running

all the computations as single-threaded. All computing

times refer to the measured average running times on

this system using real data.

2.1 Data acquisition

The data consisted of coordinates of the oars. Row-

ing oars are fixed by means of a spherical joint to the

boat, allowing them to rotate with 3 DoF. Rotation of

the oar about its axis is not currently considered, we call

the remaining angles phi and alpha. Although data was

recorded in a time resolution of 10ms in the simulator,

the actual sensors had a refresh rate of about 30ms, re-

sulting in extensive duplication of data points between

sensor updates in an irregular manner. Five strokes each

from a set of five rowers was classified manually, adding

a phase value (1-4) to each data point. The rowers con-

sisted of one expert, four intermediate and two novice

rowers.

In an upcoming version of the rowing simulator the

refresh rate of the sensors has been improved substan-

tially and will match or be less than the resolution in the

data. This will have no effect on running times, but will

likely make the classification task easier.

3 Phase Identification

Dividing the rowing process into these four phases

is a seemingly trivial problem. In fact, due to differ-

ent lengths of the rowers and common mistakes in the

calibration in rowing simulator before each session, the

classifier has to be translation invariant to some degree.

Moreover, since the classification takes place in real-

time, it is common for rowing errors such as wobbling

to be temporarily almost indistinguishable from phase

changes. It also has to handle a rather sparse description

of the curve resulting from the low sensor refresh rate.

3.1 Feature extraction

A simple set of parameters was used: the mean

around the classification point, the coordinates at the

start of the time window and the coordinates at the end

of the time window. To make the parameters translation

invariant, they were all expressed as relative coordinates

centered at the classification point.

3.2 Phase classifier

We used a regularized MLP with radial basis trans-

fer function for phase classification, which gave supe-

rior performance in early tests compared to the sigmoid

transfer function.

In the phase classification task we used a three-layer

feed forward network with 24, 12 and 4 neurons re-

spectively. The first and third layer use linear trans-

fer functions while the second uses a radial basis func-

tion (RBF). In the last layer the output of each neu-

ron represents a class. Training is performed using the

Levenberg-Marquardt algorithm and bayesian regular-

ization.

The addition of the first linear layer transforms the

input to the radial basis layer as a linear combination

of the inputs and does not extend the linear transform

of the radial basis input layer. Its purpose is only to

allow larger linear dependencies of the input layer under

regularization by reducing the effect of weight decay.

Tests of our network classifier and feature extraction

in a Simulink model showed that the system used about

0.06ms of CPU time on average, which is certainly low

enough to reach our goal of having several classifiers

running simultaneously in real-time together with the

simulation without affecting the overall performance.

3.3 State machine

For some rowers the classification could fluctuate be-

tween two phases for a brief period during the phase

change. Although this only gives a few bad data points,

it hinders us from locating the exact position of the

phase changes as well as from deriving a simple cycli-

cal transition between the phases. Our solution is a state

machine, that changes phase if and only if the consec-

utive phase is classified in two steps in a row. After

phase change occurred in the state machine, a minimum

timer of 200ms was added before another phase change

was possible. This timer was set in order to guarantee

only one classification change per phase boundary, but

at the same time be small enough to stay clear of the

next phase boundary in the cycle.
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Figure 1: Manual classification of the four phases over

five strokes.

Figure 2: Merged out-of-set classifications from cross

validation of automatic phase segmentation.

3.4 Validation of phase segmentation

An intra-subject cross-validation was performed and

the result is shown in Fig. 1 and 2 in both a visual and

analytical form. The visual result is important for two

reasons: as the number of rowing samples is small, we

have to be somewhat tolerant; in addition, the manual

classification is somewhat arbitrary and we have to give

some freedom of interpretation in the classification task.

Analytically the performance gave a correlation of

94% with the manual classification. The visual inspec-

tion of an experienced rower confirmed that the classi-

fication was of good quality overall. Most of the error

comes from a small displacement of the classification

boundary in comparison with the manual classification,

which is acceptable. In some of the cross-validation

runs we also noticed isolated points far from the appro-

priate boundary, which can probably be considered out-

liers due to measurement errors. This was successfully

filtered by the state machine. Fig. 3 shows an example

of final phase classification during a race simulation, il-

lustrating the regularity and quality of the classification

across strokes. This regularity is essential in providing

consistent data for the skying classifier.

Figure 3: Phase classification against oar angles in a

rowing session. Phi has been translated in order to ease

visual comparison.

Figure 4: Rowing cycles with the phase change used as

classification point marked by circles.

4 Skying classification

Low hands during the recovery is one of the most

common errors in rowing. It occurs during the end of

the recovery phase and consists of lifting the oars ex-

cessively over the water. Generally this can either be

done by an overly high trajectory or by moving the oars

upwards in the end of the recovery.

4.1 Training data

Data consisted of a time window (10 samples at

100Hz) of phi and alpha angles as described in 2.1.

Five strokes from five subjects were used as training

data. Of these two rowers where chosen because they

naturally performed the skying error in their stroke,

while the other three mostly performed the recovery in

a correct way.

The above phase classification procedure was used to

identify the phase change between recovery and catch.

This is at the very end of the skying error, which can

be visible from 0 to 500ms before the phase boundary.

This time window as well as a manual classification of

each stroke as either skying or non-skying was used as

training data in the skying classification task (Fig. 4).
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4.2 Feature extraction

A similar set of features as in the phase classification

was used, with the difference that the minimum abso-

lute height in the time window was added as a param-

eter. This is needed to identify the first type of skying

errors in which the trajectory has a normal shape but

reaches excessively low heights. The features are ex-

tracted only once per cycle, at the phase boundary be-

tween recovery and catch.

4.3 Skying classifier

Since the classification of the low hands error is an

easier task than phase classification, a linear network

was chosen. The advantage of this is that one can easily

derive not only if an error exists, but also the severity of

the error on a continuous scale. One linear layer with

five neurons was used and trained with the Levenberg-

Marquardt algorithm Bayesian regularization. Training

time was about 10 s. Classification time is less than

0.06ms, but is hard to estimate exactly due to the small

data set used and larger overheads from other parts of

the application.

4.4 Validation of skying classification

Intra-subject out cross-validation was performed on

the 5 subjects. Data was divided into five pairs of

training-testing data, where the former data set con-

tained four subjects and the testing set the remaining

rower. This resulted in a 100% accurate intra-subject

classification across the total of 25 test examples.

5 Conclusions

The design presented has proven to be successful

in classification of phases and skying. It can easily

be extended by a more extensive set of error classi-

fiers without raising the computing requirements, as the

new error classifiers could easily be distributed over the

rowing cycle as demonstrated. The neural network ap-

proach is fast, which allows us to run several classifiers

simultaneously.

More generally this proves that current classifiers are

reliable enough to be put in interconnected systems,

where one classifier identifies the data to be analyzed

by another classifier. Although the current task is re-

lated to gait recognition, it could be applied to other

fields. An example could be image recognition, where

one classifier identifies the center of an object, which is

then classified by a separate network.
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