MOTORE: a Mobile Haptic Interface for Neuro-Rehabilitation

Carlo A. Avizzano*, Massimo Satler*, Giovanni Cappiello#, Andrea Scoglio#, Emanuele Ruffaldi* and Massimo Bergamasco*

*PercRo Lab., Scuola Superiore Sant’Anna, Pisa – Italy

#Humanware S.r.l., Pisa – Italy

20th IEEE International Symposium on Robot and Human Interactive Communication - 31 July, 3 August 2011 - Atlanta, Georgia.
Benefits:
- Accurate position and forces measurements
- Exercise repetition
- Increases the therapy intensity and the duration
- Enhances the patient motivation with fun and challenging exercises.

Drawbacks:
- Limited workspace
- Cumbersome
- Heavy
- Not portable
• Robotic devices used for rehabilitation therapy should:
 – Enhance the patient motivation with fun and challenging exercises
 – Increase the therapy duration while reducing its cost
 – Allow precise measurement (in terms of positioning and force exerted) useful for functional assessment
 – Be used for patients with mild or severe injuries
 – Be suitable both for home based and hospital based rehabilitation
Challenge

- Design a really portable haptic interface focused on neurological rehabilitation
- The system should provide a low cost, safe and easy-to-use, robotic-device that assists the patient and the therapist in order to achieve more systematic therapy.
 - System
 - Autonomous both for actuation and control units
 - Sensing system
 - Reduced encumbrance
 - Reduced calibration
 - Precision for providing haptic feedback
 - Control system
 - A control algorithm able to guarantee good position tracking and smooth force feedback
MOBILE roboT for upper limb neurOrtho REhabilitation

- A mobile platform for rehabilitation
- Features:
 - Embedded actuation and control
 - Autonomous
 - Large workspace
 - Omni-directional mobile robot
 - Force feedback generated by the wheels
MOTORE - components

- 3 Transwheels
- 3 DC-Micromotors + Encoders
- 3 Planetary Gearheads
- 3 H-bridges
- Optical pen with Anoto technology
- Two axes force sensor
- Three axes accelerometer
- DSP Control
- Bluetooth interface
- Battery pack
- Buzzer
- LEDs
• MOTORE kinematics
 – is based on the “Killough’s mobile robot platform”
 – Three-couples of Transwheels are placed on the circumference contour with their axes oriented at 120° and incident in the center
 – The contact with the support plane is always isostatic

• Anoto Technology
 – Infrared CCD sensor
 – Pressure sensor
 – Micro-processor
 – Bluetooth wireless link
The control unit

- **32 bit Real-time CPU**
 - 150 MHz operation frequency
 - Floating-Point Unit

- **On-Chip Memory**
 - 512 Kb Flash Memory
 - 64 Kb RAM

- **Enhanced Control Peripherals**
 - 18 PWM Outputs
 - 2 Quadrature Encoder Interfaces

- **Three 32-Bit CPU Timers**

- **12-Bit ADC (16 Channels)**
• The system is composed by three distinct units
 – Absolute position processor
 – Information aggregator unit
 – Local control unit
• The units communicate by Bluetooth interface
 – RFCOMM protocol mod BT 1.0
Usability

- Emergency stop button cable
- Handle
- Load cell
- Motor
- Omni wheels
- Rehabilitation sheet
- Forearm support
System specifications

<table>
<thead>
<tr>
<th>Main system features</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Device mass</td>
<td>10 kg</td>
</tr>
<tr>
<td>Dimensions</td>
<td>ø300mm, h100 mm (Handle: ø80mm, h85 mm)</td>
</tr>
<tr>
<td>Optical sensor accuracy</td>
<td>0.4 mm</td>
</tr>
<tr>
<td>Maximum force</td>
<td>35 N</td>
</tr>
<tr>
<td>Workspace</td>
<td>Unlimited (1080x720 mm)</td>
</tr>
<tr>
<td>Power supply</td>
<td>NiMh battery pack 12V/10Ah</td>
</tr>
<tr>
<td>Power consumption</td>
<td>600W (peak)</td>
</tr>
<tr>
<td>Autonomy</td>
<td>75 minutes</td>
</tr>
</tbody>
</table>
Sensor data fusion has been used to obtain a better position estimation:
- Odometry and dynamic system models provide the desired relative accuracy together with sufficient bandwidth.
- Optical pen provides the desired absolute accuracy.

Redundant of information for safety condition.

EKF algorithm has been used to mix the position information.
From the non-linear model

\[
\begin{align*}
 x_k &= f(x_{k-1}, u_{k-1}, w_{k-1}), \\
 z_k &= g(x_k, v_k)
\end{align*}
\]

we get

\[
\begin{align*}
 \begin{bmatrix}
 x_{0k} \\
 y_{0k} \\
 \psi_{0k}
 \end{bmatrix}
 &=
 \begin{bmatrix}
 x_{0k-1} \\
 y_{0k-1} \\
 \psi_{0k-1}
 \end{bmatrix}
 + \frac{B}{3NL}
 \begin{bmatrix}
 \cos(\psi_{k-1}) & -\sin(\psi_{k-1}) & 0 \\
 \sin(\psi_{k-1}) & \cos(\psi_{k-1}) & 0 \\
 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 0 & \sqrt{3}L & -\sqrt{3}L \\
 0 & -2L & L \\
 1 & 1 & 1
 \end{bmatrix}
 \begin{bmatrix}
 \Delta \theta_{1k-1} \\
 \Delta \theta_{1k-2} \\
 \Delta \theta_{1k-3}
 \end{bmatrix}
 +
 \begin{bmatrix}
 w_{1k-1} \\
 w_{1k-2} \\
 w_{1k-3}
 \end{bmatrix}
 \\
 \begin{bmatrix}
 z_{1k} \\
 z_{2k}
 \end{bmatrix}
 &=
 \begin{bmatrix}
 x_{0k} \\
 y_{0k}
 \end{bmatrix}
 +
 \begin{bmatrix}
 \cos(\psi_k) & -\sin(\psi_k) \\
 \sin(\psi_k) & \cos(\psi_k)
 \end{bmatrix}
 \begin{bmatrix}
 B x_p \\
 B y_p
 \end{bmatrix}
 +
 \begin{bmatrix}
 v_{1k} \\
 v_{2k}
 \end{bmatrix}
\end{align*}
\]
Control loops

- Three loops at
 - 5 KHz: Motor control (FF + I)
 - 1 KHz: Velocity control (PI)
 - 50 Hz: “Position update”

- Open loop compensations
 - Inertia compensation
 - Torsion compensation
Feedback Generator

• The system has the capability to allow both impedance and admittance controllers

• Given the measured interaction force, the actual device posture and the commanded exercise modality, the “feedback generator” provides the desired velocity to be tracked

• For the assistive paradigm of the rehabilitation therapy it has been implemented an admittance control law along the desired direction and an impedance control law along the orthogonal one.

• The minimum driving force was set to 0.15 N by a digital limitation in the control loops to cope with user requirements
User friendly control panel to:
- command the HI behavior to manage the exercise phase
- real-time visualization of the system information (HI position, interaction force, error, system status..)
- save the user performance at the end of the exercise
Result example

- The exercise consists in training trajectories
- The patient has to follow a path shown on the screen in front of him.

- **Good repeatability of the user’s trajectory**
- **No drift in the robot position estimation**
Preliminary Experimentation
Feasibility pilot study

• 4 hemiparetic patients involved (3 affected on the right side, 1 on left side) aged from 16 to 67 years old
• Target size accorded to anthropometric measure (Full, Medium, Small size)
• 2 chronic patients (acute event at least 6 months before)
• 2 sub-acute patients (acute event less than 2 months before)
Feasibility pilot study (II)

- Stage of recovery evaluated by Chedoke McMaster Stroke Assessment Scale:
 - 1 Flaccid paralysis; 2 mild spasticity; 3 marked spasticity; 4 spasticity decreases; 5 spasticity wanes; 6 coordination and patterns of movement are near normal; 7 normal

- Chedoke of sub-acute patients: 2-5
- Chedoke of chronic patients: 2-4
- Shoulder, elbow and wrist spasticity evaluated before and after treatment by Modify Ashworth Scale (0-5 points)
- All patients were able to perform little voluntary movement
- Number of sessions performed: from 2 to 6 sessions
- Sessions duration: from 10 to 20 minutes
• The system need some further little improvement but it seems to be useful
• All patients (mild and moderate impaired) have been able to use the device
• No increase in muscles tone after treatment
• Treatment is well accepted from patients

Pilot study with pre-post treatment study design, bigger sample size and an increased number of sessions is needed before programming a Randomized Clinical Trial in order to evaluate the effectiveness of the device
Conclusions

• We present a new rehabilitation device that is portable and it could be used for home rehabilitation

• The system is completely autonomous both for actuation and control aspects

• The system can be indifferently used with the right arm or the left one without any reconfiguration procedure

• Force feedback and audio-visual feedback are used to increase the patient motivation
• Experimentation
• Embed the Anoto Technology to do not need the PC
• “Real-time” reference trajectory editing
• EKF with time-delay measurement compensation
 – The absolute position signal is delayed respect to the encoders signal
 – The idea is to correlate the measure not with the current position estimation but with the estimation who the pen data refer to
Acknowledgments

• This work has been funded by Regione Toscana in the context of the POR-CREO project “MOTORE”
Thank you for your attention

Questions?