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ABSTRACT 
 
The development and evaluation of haptic rendering 
algorithms presents two unique challenges.  Firstly, the 
haptic information channel is fundamentally bidirectional, 
so the output of a haptic environment is fundamentally 
dependent on user input, which is difficult to reliably 
reproduce. Additionally, it is difficult to compare haptic 
results to real-world, “gold standard” results, since such a 
comparison requires applying identical inputs to real and 
virtual objects and measuring the resulting forces, which 
requires hardware that is not widely available.  We have 
addressed these challenges by building and releasing 
several sets of position and force information, collected by 
physically scanning a set of real-world objects, along with 
virtual models of those objects.  We demonstrate novel 
applications of this data set for the development, 
debugging, optimization, evaluation, and comparison of 
haptic rendering algorithms. 
 

CR Categories:  H.5.2 [User Interfaces]: Haptic I/O 
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1. INTRODUCTION AND RELATED WORK 
 

Haptic rendering systems are increasingly oriented toward 
representing realistic interactions with the physical world.  
Particularly for simulation and training applications, 
intended to develop mechanical skills that will ultimately 
be applied in the real world, fidelity and realism are crucial. 

A parallel trend in haptics is the increasing availability 
of general-purpose haptic rendering libraries [1,2,3], 
providing core rendering algorithms that can be re-used for  
numerous applications.  Given these two trends, developers 
and users would benefit significantly from standard 
verification and validation of haptic rendering algorithms. 

In other fields, published results often “speak for 
themselves” – the correctness of mathematical systems or 
the realism of images can be validated by reviewers and 
peers.  Haptics presents a unique challenge in that the vast 

majority of results are fundamentally interactive, 
preventing consistent repeatability of results.  Furthermore, 
it is difficult at present to distribute haptic systems with 
publications, although several projects have attempted to 
provide deployable haptic presentation systems [1,4]. 

Despite the need for algorithm validation and the lack of 
available approaches to validation, little work has been 
done in providing a general-purpose system for validating 
the physical fidelity of haptic rendering systems.  
Kirkpatrick and Douglas [5] present a taxonomy of haptic 
interactions and propose the evaluation of complete haptic 
systems based on these interaction modes, and Guerraz et al 
[6] propose the use of physical data collected from a haptic 
device to evaluate a user’s behavior and the suitability of a 
device for a particular task.  Neither of these projects 
addresses realism or algorithm validation.  Raymaekers et 
al [7] describe an objective system for comparing haptic 
algorithms, but do not correlate their results to real-world 
data and thus do not address realism.  Hayward and Astley 
[8] present standard metrics for evaluating and comparing 
haptic devices, but address only the physical devices and 
do not discuss the software components of haptic rendering 
systems.  Similarly, Colgate and Brown [9] present an 
impedance-based metric for evaluating haptic devices.  
Numerous projects (e.g. [10,11]) have evaluated the 
efficacy of specific haptic systems for particular motor 
training tasks, but do not provide general-purpose metrics 
and do not address realism of specific algorithms.  Along 
the same lines, Lawrence et al [12] present a perception-
based metric for evaluating the maximum stiffness that can 
be rendered by a haptic system. 

This paper addresses the need for objective, 
deterministic haptic algorithm verification and comparison 
by presenting a publicly available data set that provides 
forces collected from physical scans of real objects, along 
with polygonal models of those objects, and several 
analyses that compare and/or assess haptic rendering 
systems.  We present several applications of this data 
repository and these analysis techniques: 
 
• Evaluation of rendering realism: comparing the forces 

generated from a physical data set with the forces 
generated by a haptic rendering algorithm allows an 
evaluation of the physical fidelity of the algorithm. 
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• Comparison of haptic algorithms: Running identical 

inputs through multiple rendering algorithms allows 
identification of the numeric strengths and weaknesses 
of each. 

 
• Debugging of haptic algorithms: identifying specific 

geometric cases in which a haptic rendering technique 
diverges from the correct results allows the isolation of 
implementation bugs or scenarios not handled by a 
particular approach, independent of overall accuracy. 

 
• Performance evaluation: Comparing the computation 

time required for the processing of a standard set of 
inputs allows objective comparison of the performance 
of specific implementations of haptic rendering 
algorithms. 

 
The data and analyses presented here assume an 
impedance-based haptic rendering system and a single 
point of contact between the haptic probe and the object of 
interested.  This work thus does not attempt to address the 
full range of possible contact types or probe shapes.  
Similarly, this work does not attempt to validate the realism 
of an entire haptic rendering pipeline, which would require 
a consideration of device and user behavior and perceptual 
psychophysics.  Rather, we present a data set and several 
analyses that apply to a large (but not universal) class of 
haptic rendering systems.  We leave the extension of this 
approach to a wider variety of inputs and to more 
sophisticated metrics as future work. 

The remainder of this paper is structured as follows: 
Section 2 will describe our system for physical data 
acquisition, Section 3 will describe the process by which 
we simulate a contact trajectory for evaluation of a haptic 
rendering algorithm, Section 4 will describe some example 
results we have obtained through this process, and Section 
5 will discuss the limitations of our method and several 
scenarios in which our data and methods may be useful to 
others in the haptics community.  We conclude with a 
description of our public data repository and a discussion 
of future extensions to this work. 
  
2. DATA ACQUISITION 
 

Haptic rendering algorithms typically have two sources of 
input: a geometric model of an object of interest and real-
time positional data collected from a haptic interface.  The 
output of this class of algorithms is typically a stream of 
forces that is supplied to a haptic interface.  A key goal of 
our data and analyses is to compare this class of algorithms 
to real-world data, which requires: (a) collecting or creating 
a geometric model of a real-world object and (b) collecting 

a series of correlated forces and positions on the surface of 
that object. 

We have constructed a sensor apparatus that allows the 
collection of this data.  Our specific goal is to acquire data 
for haptic interaction with realistic objects using a hand-
held stylus or pen-like device (henceforth called “the 
probe”).  We use the HAVEN, an integrated multisensory 
measurement and display environment at Rutgers, for 
acquiring measurements interactively, with a human in the 
loop. 

In previous work [13,14], we acquired such 
measurements using a robotic system called ACME (the 
UBC Active Measurement facility). This robotic approach 
has many advantages, including the ability to acquire 
repeatable and repetitive measurements for a long period of 
time, and the ability to acquire measurements from remote 
locations on the Internet. However, our current goals are 
different, and a hand-held probe offers a different set of 
advantages that are important for evaluating interaction 
with a haptic device. 

First, it measures how a real probe behaves during 
natural human interaction, and therefore provides more 
meaningful data for comparison. This is important, because 
contact forces depend in part on the passive, task-
dependent impedance of the hand holding the probe, which 
is difficult to measure or to emulate with a robot arm.  
Second, the dexterity of robot manipulators available today 
is very poor in comparison with the human hand.  
Furthermore, acquiring measurements in concave regions 
or near obstacles using a robot is very difficult, but is easy 
for a human. 

We acquired three types of measurements for each 
object in our data repository: 

  
1. The object’s 3D shape 
2. Motion of the probe tip relative to the object 
3. The force on the probe tip during contact 

 

 

Figure 1.  The sensor used to acquire force and torque 
information, alongside a coin to indicate scale. 
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We describe these measurements in the remainder of 
this section, in reverse order. 

Force data are acquired using a custom-designed hand-
held probe built around a Nano17 6-axis force/torque 
sensor (Figure 1) (ATI Industrial Automation, Apex, NC, 
USA).  The reported spatial resolution of the force sensor is 
as follows (the z-axis is aligned with the axis of the probe): 
Fx,Fy 1/320 N; Fz 1/640 N; Tx,Ty 1/128 N·mm; Tz 1/128 
N·mm. 

A replaceable sphere-tipped Coordinate Measuring 
Machine (CMM) stylus is attached to the front face of the 
force sensor, and a handle to the rear, allowing a user to 
drag the probe tip over the surface being measured.  The 
interchangability of the probe tip is important, since the 
curvature of the contact area kinematically filters the probe 
motion and thus impacts the acquired data. 

As the surface is being probed, the force/torque 
measurements from the Nano17 are sampled at 5kHz using 
a 16-bit A/D converter (National Instruments, Austin, 
Texas, USA).  The static gravitational load due to the probe 
tip is compensated for based on the measured orientation of 
the probe.  The force and torque measured at the force 
sensor are transformed to the center of the probe tip to 
compute the contact force on the tip. 

In addition to measuring force and torque, the probe’s 
motion is tracked to provide simultaneous position data. 
The probe is tracked using a six-camera motion-capture 
system (Vicon Peak, Lake Forest, CA, USA).  Several 
small retroreflective optical markers are attached to the 
probe, allowing the camera system to record and 
reconstruct the probe’s position and orientation at 60Hz.  
The reconstructed position is accurate to less than 0.5mm. 

The object being measured is also augmented with 
optical tracking markers, so the configuration of the probe 

with respect to the object is known even when the user 
moves the object to access different locations on the 
surface.  The object is scanned with a Polhemus FastScan 
laser scanner (Polhemus, Colchester, VT, USA) to generate 
a mesh representation of the object's surface.  The 
manufacturer reports an accuracy of 1mm for the surface.  
A water-tight triangular mesh is extracted from the scans 
using a fast RBF method.  The location of the optical 
tracking markers are included in the scan to allow 
registration of the surface geometry with the motion 
capture data acquired during contact measurement.  Figure 
2 shows an example data series acquired with our setup. 
The full data set is available in the public repository (see 
Section 7). 

Our initial scanning effort has focused on rigid objects, 
to constrain the analysis to static geometry. 
 
3. DATA PROCESSING 
 

Given a set of scanned trajectories, we evaluate a haptic 
rendering algorithm by feeding a sequence of scanned 
probe positions into the algorithm and comparing the 
computed forces to the physically-scanned forces.  For 
penalty-based haptic rendering algorithms, this requires a 
pre-processing step to create a virtual trajectory that is 
inside the virtual representation of the scanned object. 

This section will describe this process, which can be 
summarized in three stages: 
 

1. Pre-processing of a scanned trajectory to allow direct 
comparison to rendered trajectories. 

2. Computation of rendered forces and a surface contact 

Figure 2.  Data collected from our scanning apparatus. 
Normal (z) forces are indicated in red, tangential (x,y) 
forces are indicated in green and blue.  The data 
presented here represent a scanning motion, primarily 
on the y axis, on a flat plane.  Brief initial and final taps 
were added to aid registration of force and motion data; 
they are visible in the normal force. 
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Figure 3. An overview of our data processing and 
algorithm evaluation pipeline.  An object is scanned, 
producing a 3D geometric model and an out-trajectory. 
An in-trajectory is synthesized from this out-trajectory 
and is fed as input to a haptic rendering system, which 
produces force and trajectory information.  This 
information can be compared to the physically-scanned 
forces and the original trajectory. 
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point trajectory by the haptic rendering algorithm that 
is being evaluated, using the pre-processed input 
positions. 

3. Computation of performance metrics from the output 
of the haptic rendering system. 

 
Figure 3 summarizes this process. 
 
3.1 Data pre-processing 
 

The haptic rendering algorithms on which we have 
performed initial analyses are penalty-based: the virtual 
haptic probe is allowed to penetrate the surface of a 
simulated object, and a force is applied to expel the haptic 
probe from the object.  A physical (real-world) probe 
scanning the surface of a physical object never penetrates 
the surface of the object.  Therefore a virtual scanning 
trajectory is not expected to be identical to a physical 
trajectory, even if a user intends to perform the same probe 
motions on the real and virtual objects.  We therefore 
perform a pre-processing step that – given a physical 
scanning trajectory – generates a sub-surface trajectory that 
(under ideal conditions) produces a surface contact 
trajectory that is equivalent to the scanned trajectory.  This 
allows a direct comparison of a trajectory collected from a 
haptic simulation with the ideal behavior that should be 
expected from that simulation. 

We refer to an ideal trajectory (one in which the probe 
never penetrates the surface of the object) as an “out-
trajectory”, and a trajectory that allows the probe to travel 
inside the object as an “in-trajectory”.  Figure 4 
demonstrates this distinction.   

The penetration depth (the distance between the in- and 
out-trajectories) of a virtual haptic probe into a surface is 
generally dependent on an adjustable spring constant, 
which is an input to the algorithm and should be considered 
part of the system that is under evaluation; this constant is 
reported along with all results in our online repository.  The 
spring constant is assumed to be homogeneous for purposes 
of the present analysis. 

Typically, penetration depth and the resulting penalty 
force are related to this spring constant according to 
Hooke’s Law: 

 
fp = -kx                         (1) 

 
Here fp is the penalty force vector, k is the scalar 

stiffness constant, and x is the penetration vector (the 
vector between the haptic probe position and a surface 
contact point computed by the haptic rendering algorithm).  
We use this relationship to compute a corresponding in-
trajectory for a physically-scanned out-trajectory. 

Surface normals are computed at each point in the out-
trajectory, using the scanned geometric model of the object.  
These surface normals are then used to extract the normal 
component of the recorded force at each point.  Each point 

in the sampled out-trajectory is then converted to a 
corresponding point in the in-trajectory by projecting the 
surface point into the object along the surface normal, by a 
distance inversely proportional to the chosen stiffness and 
directly proportional to the recorded normal force (for a 
given normal force, higher stiffnesses should result in 
lower penetration depths): 
 

pin = pout - Fn / k                (2) 
 

Here pin and pout are corresponding in- and out-
trajectory points, Fn is the recorded normal force at each 
point, and k is the selected stiffness constant.  This 
relationship is illustrated in Figure 5.  Each in-trajectory 
point is assigned a timestamp that is equal to the 
corresponding out-trajectory point’s timestamp. 

Following this computation, the in-trajectory 
corresponding to a physical out-trajectory is the path that a 
haptic probe would need to take in a virtual environment so 
that the surface contact point corresponding to that haptic 
probe path precisely follows the sampled out-trajectory. 
 
3.2 Trajectory processing 
 

The input to a haptic rendering algorithm is typically a 
geometric model of an object of interest and a series of 
positions obtained from a haptic interface.  For the present 
analysis, we obtain a geometric model from the laser-
scanning system described in Section 1, and we present a 
stream of positions – collected from our position-tracking 
system – through a “virtual haptic interface”.  From the 
perspective of a rendering algorithm implementation, this 
interface plays the role of a haptic device that is able to 
report its position in Cartesian space. 

Given an in-trajectory computed from a physical out-
trajectory, we can thus simulate a virtual haptic interaction 
with an object, which will produce a stream of forces and – 
in the case of many common haptic rendering algorithms – 
a new out-trajectory (which we refer to as a “rendered 
trajectory”), representing the path that a virtual contact 
point traveled on the surface of the virtual object. 

The computational complexity of this simulation is 
identical to the case in which a haptic interface is used 

 
 
Figure 4.  An “out-trajectory” represents the path taken 
by a physical probe over the surface of an object; a 
haptic rendering algorithm typically approximates this
trajectory with an “in-trajectory” that allows the probe 
to enter the virtual object. 
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interactively, allowing assessment of computational 
performance in addition to algorithm output. 
 
3.3 Metric extraction 
 

Each time an in-trajectory is fed through a haptic rendering 
algorithm, producing a stream of forces and surface contact 
point locations, we collect the following evaluation metrics: 
 
• Output force error: the difference between the forces 

produced by the haptic rendering algorithm and the 
forces collected by the force sensor.  This is 
summarized as a root-mean-squared Euclidean 
distance, i.e.: 

 

∑
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−=
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e

1

1 rr
                  (3) 

 

 Here N is the number of samples in the out-trajectory, 
Fpi is the physically-scanned force at sample i and Fri 
is the rendered force at sample i.  This metric is 
referred to as “RMS Force Error” in Section 4.  The 
physically-scanned forces have been resampled to 
align in time with the position samples.  

 
• Output position error: the difference between the 

surface contact point position produced by the haptic 
rendering algorithm and the physically sampled out-
trajectory.  This can also be summarized as a root-
mean-squared Euclidean distance, although we have 
found that it is more valuable to collect the cases that 
exceed a threshold instantaneous error, representing 
“problematic” geometric cases. 

 
• Computational cost: the mean, median, and maximum 

numbers of floating-point operations required to a 
compute a surface contact point and/or penalty force 
and the floating-point operation count for the complete 
trajectory.  While this is not a truly platform-
independent measure of computational complexity, it 
scales well among CPU speeds and is roughly 
proportional to computation time on a particular CPU. 

 
We do not present these metrics as a comprehensive 
representation of haptic rendering performance, rather we 
present them as examples of immediately-useful data that 

can be extracted using our data collection system, data 
repository, and offline processing approach.  We anticipate 
that future work and future contributions by the haptics 
community will expand the set of available metrics and 
assess their correlations to the perceptual quality of haptic 
environments. 
 
4. EXPERIMENTS AND RESULTS 
 

We used the analyses discussed in Section 3 to conduct 
four experiments that attempt to quantify and compare 
haptic rendering algorithms.   Specifically, we explored: 
 
1. The relative accuracy and computational cost of a 

haptic proxy algorithm and a rendering scheme based 
on voxel sampling. 

2. The impact of simulated friction on the accuracy of 
haptic rendering and the use of ground truth data for 
friction identification. 

3. The impact of mesh resolution on the accuracy of 
haptic rendering. 

4. The impact of force shading on the accuracy of haptic 
rendering. 

 
For consistency, these analyses have all been performed 
using the same model (a scanned plastic duck) and input 
trajectory (see Figure 6), which is available in the online 
repository. 

These results are presented as examples of analyses that 
can be derived from our data sets, and their generalization 
to a wider variety of rendering algorithms, models, and 
trajectories is left for future work and is the primary goal of 
our online repository. 
 
4.1 Proxy-based vs. voxel-based rendering 
 

Our approach was used to compare the computational cost 
and force errors for a public-domain implementation [1] of 
the haptic proxy (god-object) algorithm [15] and a voxel-
based rendering scheme [16], and to assess the impact of 
voxel resolution on rendering accuracy.  This analysis does 
not include any cases in which the proxy provides 
geometric correctness that the voxel-based rendering could 
not; i.e. the virtual haptic probe never “pops through” the 
model. 
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Figure 5. Computation of an in-trajectory point from a 
sampled out-trajectory point. 

 
Figure 6. The model and scanned trajectory used for the 
experiments presented in section 4. 
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Voxel-based rendering was performed by creating a 
fixed voxel grid and computing the nearest triangle to each 
voxel center.  The stored triangle positions and surface 
normals are used to render forces for each voxel through 
which the probe passes. 

Results for the proxy algorithm and for the voxel-based 
algorithm (at two resolutions) are summarized in Table 1, 
including the computational cost in floating-point 
operations, the initialization time in seconds (on a 1.5GHz 
Pentium), and the memory overhead.  We observe that the 
voxel-based approach offers comparable force error and a 
significant reduction in floating-point computation, at the 
cost of significant preprocessing time and memory 
overhead, relative to the proxy (god-object) approach.  It 
should be noted that analysis of this particular trajectory 
does not capture the fact that the proxy-based approach 
offers geometric correctness in many cases where the 
voxel-based approach would break down.  We will discuss 
this further in section 5. 
 
4.2 Friction identification and evaluation 
 

Our approach was used to evaluate the impact of simulated 
friction on the accuracy of haptic rendering, using a public-
domain implementation [1] of the friction-cone algorithm 
[17].  This analysis also demonstrates the applicability of 
our approach for identifying rendering parameters – in this 
case a friction radius – from ground-truth data. 

This analysis uses the friction cone algorithm available 
in CHAI 3D (version 1.31). The in-trajectory derived from 
the physical-scanned (raw) trajectory is fed to CHAI for 
rendering, and the resulting forces are compared to the 
physically-scanned forces. The coefficient of dynamic 
friction is iteratively adjusted until a minimum error 
between the physical and rendered forces is achieved.  
Static (stick-slip) friction was not considered for this 
analysis. 

Results for the no-friction and optimized-friction cases 
are presented in Table 2, including the relative 
computational cost in floating-point operations.  We 
observe that the trajectory computed with friction enabled 
contains significantly lower force-vector-error than the no-
friction trajectory, indicating a more realistic rendering, 
with only a slightly higher computational cost. 

 
4.3 Impact of mesh resolution 
 

Our approach was used to assess the impact of varying 
mesh resolution on the accuracy of haptic rendering.  This 
is a potentially valuable application of our data, since mesh 
resolution is often varied to trade off performance for 
accuracy for specific applications, and the use of ground 
truth data will allow application developers to select 
minimal models that meet application-specific accuracy 
bounds. 

The haptic proxy algorithm was provided with an in-
trajectory and with eight versions of the duck model, each 
at a different tessellation level.  The results for each 
resolution are presented in Table 3 and Figure 7.  We 
observe that the error is fairly stable for a large range of 
resolutions between 1000 and 140000 triangles, and 
increases sharply for lower resolutions. 
 
4.4 Impact of force shading 
 

The analysis presented in Section 4.3 was repeated with 
force shading [18] enabled, to quantify the impact of force 
shading on the accuracy of rendering this trajectory.  Force 
shading uses interpolated surface normals to determine the 
direction of feedback within a surface primitive, and is the 
haptic equivalent of Gouraud shading. 

Results are presented in Figure 7, along with the results 
assessing the impact of model size on rendering accuracy.  
We observe that for a large range of model sizes – between 
1k and 10k triangles, a typical range for object sizes used in 
virtual environments – force shading significantly reduces 
the RMS force error for rendering our duck model.  Note 
that the impact of force shading is related to the curvature 

Algorithm Voxel resolution RMS force error (N) Floating-point ops Init time (s) Memory (MB) 
voxel 323 .136  484K 0.27 1.0 
voxel 643 .130  486K 2.15 8.0 
proxy N/A .129  10.38M 0.00 0.0 

 

Table 1. Accuracy and cost of haptic rendering using proxy- and voxel-based rendering schemes.   

Friction radius (mm) RMS force error (N) Flops 
0.0000 (disabled) 0.132  10.4M 
0.3008 0.067  10.8M 

 

Table 2. Rendering accuracy with and without simulated 
dynamic friction.  

Model size 
(kTri) 

Flops RMS force 
error (N) 

Relative 
error 

0.2 9.7136M 0.085 9.92 
0.5 10.361M 0.031 3.55 
1 9.7921M 0.031 3.61 
3 10.380M 0.022 2.61 
6 10.560M 0.022 2.61 
9 10.644M 0.015 1.80 
64 10.064M 0.013 1.51 
140 9.2452M 0.009 1.00 

 

Table 3. Rendering accuracy of the duck model at 
various mesh resolutions, computed using the proxy 
algorithm.  “Relative error” is computed as a fraction of 
the error obtained using the maximum-resolution model. 
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of the object being rendered, and an object with smoothly-
varying curvature (like our duck model) is expected to 
benefit significantly from force shading. 
 
5. DISCUSSION 
 

We have provided a series of “ground truth” data sets for 
haptic rendering, acquired with a novel scanning paradigm 
that allows force and position data to be acquired during a 
natural, human-driven scanning motion.  We have also 
presented an approach for preprocessing this data to make 
it suitable as input for a variety of haptic rendering 
algorithms, and we have provided a series of example 
analyses that demonstrate our approach’s ability to 
quantitatively assess haptic rendering systems. 

A key application of these data and analyses is to assess 
the accuracy of a particular haptic rendering system and to 
approximately bound the difference between the forces 
experienced by a user through a haptic interface and the 
forces the user would experience performing the same 
interactions with a real object.  This analysis can also be 
used to compare haptic rendering algorithms more 
objectively: if one algorithm consistently produces a lower 
force error relative to a real data set than another algorithm, 
it is objectively “more realistic” by our metrics.  In this 
context, our ground truth data set and preliminary analysis 
techniques may play a role in haptics similar to the role 
played by [19] in stereo computer vision. 

This approach has an application not only in evaluating 
published rendering systems, but also in debugging 
individual implementations.  Debugging haptic rendering 
systems is often difficult relative to debugging other 
computer systems, due to the hard-real-time constraints, the 
nondeterminism introduced by physical devices, and the 
difficulty of reliably replicating manual input.  Our 
approaches and our data sets allow a developer to 
periodically test a haptic rendering system via a series of 

objective evaluations, and thus rapidly identify problems 
and isolate the changes that caused them. 

We have also provided an objective series of input data 
that can be used to evaluate the computational performance 
of an algorithm.  In this context, our data sets and analyses 
provide a “haptic benchmark”, analogous to the rendering 
benchmarks available to the graphics community, e.g. 
3DMark (Futuremark Corp).  Computational performance 
of a haptic rendering system can vary significantly with 
input, but it is difficult to describe and distribute the input 
stream used to generate a performance analysis result.  By 
providing a standard data series and a set of reference 
results, we present a performance benchmark that authors 
can use to describe algorithmic performance.  This is 
particularly relevant for objectively presenting the value of 
optimization strategies for rendering and collision detection 
whose primary value may lie in performance 
improvements.  Performance results are still dependent on 
the platform used to generate the results, but this 
information can be reported concisely along with results. 

The analyses presented here have focused primarily on 
“force correctness”, with the ultimate metric of algorithmic 
correctness being the accuracy of output forces relative to 
ground truth forces.  However, the use of standardized, pre-
recorded haptic input data is also suited to assessing the 
geometric correctness of rendering algorithms, and for 
identifying anomalous cases that cause incorrect behavior 
in haptic rendering systems. 

For example, figure 8 illustrates a problematic geometry 
that can be captured by our analysis approach.  In this case, 
for certain stiffness values and angles of extrusion (i.e. 
“bump sharpness”), the surface contact point produced by 
the proxy algorithm becomes “stuck” on the bump, 
producing an incorrect trajectory that misrepresents object 
geometry.  Our approach allows a rapid evaluation of this 
geometry using a variety of synthetic models and a variety 
of algorithmic parameters (friction values, stiffnesses), 
allowing quantification of such problematic cases for 
particular renderer implementations.  These cases are very 
difficult to reliably isolate when a user and physical device 
are in the debugging loop. 

Our current approach and available data sets, however, 
suffer from significant limitations.  While a direct 
comparison of an algorithm’s output forces to ground truth 
forces is expected to correlate to some degree with 
perceptual realism, it is not nearly a comprehensive metric.  
Furthermore, algorithmic performance and even results are 
expected to vary somewhat when collected with a user and 
a physical device in the loop, and no set of reference data 
can completely capture all possible cases that may have 
particular impacts on various rendering algorithms.  
Despite these limitations, we propose that a standard 
approach to haptic rendering analysis and standard data 
series will significantly enhance the quality and objectivity 
of haptic rendering system evaluation.  In the following 
section, we will discuss future work and planned 
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duck model, rendered with the proxy algorithm.

231



improvements to our online repository that will broaden the 
applicability of our data and methods. 
 
6. FUTURE WORK 
 

To address the limitations discussed in the previous section, 
future work will add both data and additional analyses to 
our repository.  In particular, we hope to capture a wide 
variety of geometries, material types, contact pressures, and 
contact trajectories.  Subsequent acquisitions will focus on 
adding more complex contact shapes (our current probe 
approximates a single point of contact). 

Furthermore, the simple RMS force error metric used in 
this paper is not expected to be an optimal representation of 
perceptual accuracy of haptic rendering.  Future work will 
include the development and psychophysical evaluation of 
more appropriate metrics for “haptic correctness”. 

Given a sufficient variety of data, our approach also 
may have value in the automated optimization of various 
parameters used in haptic rendering; the identification of a 
dynamic friction coefficient in section 4.2 is a preliminary 
example of this application.  Future work will include the 
generalization of this optimization scheme to a wider 
variety of parameters, e.g. static friction, local compliance, 
roughness, and haptic texture. 
 
7. DATA REPOSITORY 
 

To provide a standard reference that can be used by the 
community for evaluation of haptic rendering systems, the 
data, methods, and results discussed in this paper are 
publicly available at: 
 

http://jks-folks.stanford.edu/haptic_data/ 
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Figure 8. This failure case for the Proxy algorithm is an 
example of a geometric anomaly that can be captured 
and quantified using pre-recorded trajectories. 
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