
Standardized Evaluation of Haptic Rendering Systems

Emanuele Ruffaldi1, Dan Morris2, Timothy Edmunds3, Federico Barbagli2, Dinesh K.Pai3
1PERCRO, Scuola Superiore S. Anna

2Computer Science Department, Stanford University
3Computer Science Department, Rutgers University

pit@sssup.it, {dmorris,barbagli}@robotics.stanford.edu, {tedmunds,dpai}@cs.rutgers.edu

ABSTRACT

The development and evaluation of haptic rendering
algorithms presents two unique challenges. Firstly, the
haptic information channel is fundamentally bidirectional,
so the output of a haptic environment is fundamentally
dependent on user input, which is difficult to reliably
reproduce. Additionally, it is difficult to compare haptic
results to real-world, “gold standard” results, since such a
comparison requires applying identical inputs to real and
virtual objects and measuring the resulting forces, which
requires hardware that is not widely available. We have
addressed these challenges by building and releasing
several sets of position and force information, collected by
physically scanning a set of real-world objects, along with
virtual models of those objects. We demonstrate novel
applications of this data set for the development,
debugging, optimization, evaluation, and comparison of
haptic rendering algorithms.

CR Categories: H.5.2 [User Interfaces]: Haptic I/O

Keywords: haptics, ground truth, evaluation

1. INTRODUCTION AND RELATED WORK

Haptic rendering systems are increasingly oriented toward
representing realistic interactions with the physical world.
Particularly for simulation and training applications,
intended to develop mechanical skills that will ultimately
be applied in the real world, fidelity and realism are crucial.

A parallel trend in haptics is the increasing availability
of general-purpose haptic rendering libraries [1,2,3],
providing core rendering algorithms that can be re-used for
numerous applications. Given these two trends, developers
and users would benefit significantly from standard
verification and validation of haptic rendering algorithms.

In other fields, published results often “speak for
themselves” – the correctness of mathematical systems or
the realism of images can be validated by reviewers and
peers. Haptics presents a unique challenge in that the vast

majority of results are fundamentally interactive,
preventing consistent repeatability of results. Furthermore,
it is difficult at present to distribute haptic systems with
publications, although several projects have attempted to
provide deployable haptic presentation systems [1,4].

Despite the need for algorithm validation and the lack of
available approaches to validation, little work has been
done in providing a general-purpose system for validating
the physical fidelity of haptic rendering systems.
Kirkpatrick and Douglas [5] present a taxonomy of haptic
interactions and propose the evaluation of complete haptic
systems based on these interaction modes, and Guerraz et al
[6] propose the use of physical data collected from a haptic
device to evaluate a user’s behavior and the suitability of a
device for a particular task. Neither of these projects
addresses realism or algorithm validation. Raymaekers et
al [7] describe an objective system for comparing haptic
algorithms, but do not correlate their results to real-world
data and thus do not address realism. Hayward and Astley
[8] present standard metrics for evaluating and comparing
haptic devices, but address only the physical devices and
do not discuss the software components of haptic rendering
systems. Similarly, Colgate and Brown [9] present an
impedance-based metric for evaluating haptic devices.
Numerous projects (e.g. [10,11]) have evaluated the
efficacy of specific haptic systems for particular motor
training tasks, but do not provide general-purpose metrics
and do not address realism of specific algorithms. Along
the same lines, Lawrence et al [12] present a perception-
based metric for evaluating the maximum stiffness that can
be rendered by a haptic system.

This paper addresses the need for objective,
deterministic haptic algorithm verification and comparison
by presenting a publicly available data set that provides
forces collected from physical scans of real objects, along
with polygonal models of those objects, and several
analyses that compare and/or assess haptic rendering
systems. We present several applications of this data
repository and these analysis techniques:

• Evaluation of rendering realism: comparing the forces

generated from a physical data set with the forces
generated by a haptic rendering algorithm allows an
evaluation of the physical fidelity of the algorithm.

225

Symposium on Haptic Interfaces for
Virtual Environment and Teleoperator Systems 2006
March 25 - 26, Alexandria, Virginia, USA
1-4244-0226-3/06/$20.00 ©2006 IEEE

• Comparison of haptic algorithms: Running identical

inputs through multiple rendering algorithms allows
identification of the numeric strengths and weaknesses
of each.

• Debugging of haptic algorithms: identifying specific

geometric cases in which a haptic rendering technique
diverges from the correct results allows the isolation of
implementation bugs or scenarios not handled by a
particular approach, independent of overall accuracy.

• Performance evaluation: Comparing the computation

time required for the processing of a standard set of
inputs allows objective comparison of the performance
of specific implementations of haptic rendering
algorithms.

The data and analyses presented here assume an
impedance-based haptic rendering system and a single
point of contact between the haptic probe and the object of
interested. This work thus does not attempt to address the
full range of possible contact types or probe shapes.
Similarly, this work does not attempt to validate the realism
of an entire haptic rendering pipeline, which would require
a consideration of device and user behavior and perceptual
psychophysics. Rather, we present a data set and several
analyses that apply to a large (but not universal) class of
haptic rendering systems. We leave the extension of this
approach to a wider variety of inputs and to more
sophisticated metrics as future work.

The remainder of this paper is structured as follows:
Section 2 will describe our system for physical data
acquisition, Section 3 will describe the process by which
we simulate a contact trajectory for evaluation of a haptic
rendering algorithm, Section 4 will describe some example
results we have obtained through this process, and Section
5 will discuss the limitations of our method and several
scenarios in which our data and methods may be useful to
others in the haptics community. We conclude with a
description of our public data repository and a discussion
of future extensions to this work.

2. DATA ACQUISITION

Haptic rendering algorithms typically have two sources of
input: a geometric model of an object of interest and real-
time positional data collected from a haptic interface. The
output of this class of algorithms is typically a stream of
forces that is supplied to a haptic interface. A key goal of
our data and analyses is to compare this class of algorithms
to real-world data, which requires: (a) collecting or creating
a geometric model of a real-world object and (b) collecting

a series of correlated forces and positions on the surface of
that object.

We have constructed a sensor apparatus that allows the
collection of this data. Our specific goal is to acquire data
for haptic interaction with realistic objects using a hand-
held stylus or pen-like device (henceforth called “the
probe”). We use the HAVEN, an integrated multisensory
measurement and display environment at Rutgers, for
acquiring measurements interactively, with a human in the
loop.

In previous work [13,14], we acquired such
measurements using a robotic system called ACME (the
UBC Active Measurement facility). This robotic approach
has many advantages, including the ability to acquire
repeatable and repetitive measurements for a long period of
time, and the ability to acquire measurements from remote
locations on the Internet. However, our current goals are
different, and a hand-held probe offers a different set of
advantages that are important for evaluating interaction
with a haptic device.

First, it measures how a real probe behaves during
natural human interaction, and therefore provides more
meaningful data for comparison. This is important, because
contact forces depend in part on the passive, task-
dependent impedance of the hand holding the probe, which
is difficult to measure or to emulate with a robot arm.
Second, the dexterity of robot manipulators available today
is very poor in comparison with the human hand.
Furthermore, acquiring measurements in concave regions
or near obstacles using a robot is very difficult, but is easy
for a human.

We acquired three types of measurements for each
object in our data repository:

1. The object’s 3D shape
2. Motion of the probe tip relative to the object
3. The force on the probe tip during contact

Figure 1. The sensor used to acquire force and torque
information, alongside a coin to indicate scale.

226

We describe these measurements in the remainder of
this section, in reverse order.

Force data are acquired using a custom-designed hand-
held probe built around a Nano17 6-axis force/torque
sensor (Figure 1) (ATI Industrial Automation, Apex, NC,
USA). The reported spatial resolution of the force sensor is
as follows (the z-axis is aligned with the axis of the probe):
Fx,Fy 1/320 N; Fz 1/640 N; Tx,Ty 1/128 N·mm; Tz 1/128
N·mm.

A replaceable sphere-tipped Coordinate Measuring
Machine (CMM) stylus is attached to the front face of the
force sensor, and a handle to the rear, allowing a user to
drag the probe tip over the surface being measured. The
interchangability of the probe tip is important, since the
curvature of the contact area kinematically filters the probe
motion and thus impacts the acquired data.

As the surface is being probed, the force/torque
measurements from the Nano17 are sampled at 5kHz using
a 16-bit A/D converter (National Instruments, Austin,
Texas, USA). The static gravitational load due to the probe
tip is compensated for based on the measured orientation of
the probe. The force and torque measured at the force
sensor are transformed to the center of the probe tip to
compute the contact force on the tip.

In addition to measuring force and torque, the probe’s
motion is tracked to provide simultaneous position data.
The probe is tracked using a six-camera motion-capture
system (Vicon Peak, Lake Forest, CA, USA). Several
small retroreflective optical markers are attached to the
probe, allowing the camera system to record and
reconstruct the probe’s position and orientation at 60Hz.
The reconstructed position is accurate to less than 0.5mm.

The object being measured is also augmented with
optical tracking markers, so the configuration of the probe

with respect to the object is known even when the user
moves the object to access different locations on the
surface. The object is scanned with a Polhemus FastScan
laser scanner (Polhemus, Colchester, VT, USA) to generate
a mesh representation of the object's surface. The
manufacturer reports an accuracy of 1mm for the surface.
A water-tight triangular mesh is extracted from the scans
using a fast RBF method. The location of the optical
tracking markers are included in the scan to allow
registration of the surface geometry with the motion
capture data acquired during contact measurement. Figure
2 shows an example data series acquired with our setup.
The full data set is available in the public repository (see
Section 7).

Our initial scanning effort has focused on rigid objects,
to constrain the analysis to static geometry.

3. DATA PROCESSING

Given a set of scanned trajectories, we evaluate a haptic
rendering algorithm by feeding a sequence of scanned
probe positions into the algorithm and comparing the
computed forces to the physically-scanned forces. For
penalty-based haptic rendering algorithms, this requires a
pre-processing step to create a virtual trajectory that is
inside the virtual representation of the scanned object.

This section will describe this process, which can be
summarized in three stages:

1. Pre-processing of a scanned trajectory to allow direct
comparison to rendered trajectories.

2. Computation of rendered forces and a surface contact

Figure 2. Data collected from our scanning apparatus.
Normal (z) forces are indicated in red, tangential (x,y)
forces are indicated in green and blue. The data
presented here represent a scanning motion, primarily
on the y axis, on a flat plane. Brief initial and final taps
were added to aid registration of force and motion data;
they are visible in the normal force.

out-
trajectory

in-
trajectory

rendered
forces and
trajectory

projection
below model

surface

haptic
rendering

physical modelrange
scan

surface probe

“true”
forces

surface
mesh

algorithm
evaluation

out-
trajectory

in-
trajectory

rendered
forces and
trajectory

projection
below model

surface

haptic
rendering

physical modelphysical modelrange
scan

surface probe

“true”
forces

surface
mesh

surface
mesh

algorithm
evaluation

Figure 3. An overview of our data processing and
algorithm evaluation pipeline. An object is scanned,
producing a 3D geometric model and an out-trajectory.
An in-trajectory is synthesized from this out-trajectory
and is fed as input to a haptic rendering system, which
produces force and trajectory information. This
information can be compared to the physically-scanned
forces and the original trajectory.

227

point trajectory by the haptic rendering algorithm that
is being evaluated, using the pre-processed input
positions.

3. Computation of performance metrics from the output
of the haptic rendering system.

Figure 3 summarizes this process.

3.1 Data pre-processing

The haptic rendering algorithms on which we have
performed initial analyses are penalty-based: the virtual
haptic probe is allowed to penetrate the surface of a
simulated object, and a force is applied to expel the haptic
probe from the object. A physical (real-world) probe
scanning the surface of a physical object never penetrates
the surface of the object. Therefore a virtual scanning
trajectory is not expected to be identical to a physical
trajectory, even if a user intends to perform the same probe
motions on the real and virtual objects. We therefore
perform a pre-processing step that – given a physical
scanning trajectory – generates a sub-surface trajectory that
(under ideal conditions) produces a surface contact
trajectory that is equivalent to the scanned trajectory. This
allows a direct comparison of a trajectory collected from a
haptic simulation with the ideal behavior that should be
expected from that simulation.

We refer to an ideal trajectory (one in which the probe
never penetrates the surface of the object) as an “out-
trajectory”, and a trajectory that allows the probe to travel
inside the object as an “in-trajectory”. Figure 4
demonstrates this distinction.

The penetration depth (the distance between the in- and
out-trajectories) of a virtual haptic probe into a surface is
generally dependent on an adjustable spring constant,
which is an input to the algorithm and should be considered
part of the system that is under evaluation; this constant is
reported along with all results in our online repository. The
spring constant is assumed to be homogeneous for purposes
of the present analysis.

Typically, penetration depth and the resulting penalty
force are related to this spring constant according to
Hooke’s Law:

fp = -kx (1)

Here fp is the penalty force vector, k is the scalar

stiffness constant, and x is the penetration vector (the
vector between the haptic probe position and a surface
contact point computed by the haptic rendering algorithm).
We use this relationship to compute a corresponding in-
trajectory for a physically-scanned out-trajectory.

Surface normals are computed at each point in the out-
trajectory, using the scanned geometric model of the object.
These surface normals are then used to extract the normal
component of the recorded force at each point. Each point

in the sampled out-trajectory is then converted to a
corresponding point in the in-trajectory by projecting the
surface point into the object along the surface normal, by a
distance inversely proportional to the chosen stiffness and
directly proportional to the recorded normal force (for a
given normal force, higher stiffnesses should result in
lower penetration depths):

pin = pout - Fn / k (2)

Here pin and pout are corresponding in- and out-
trajectory points, Fn is the recorded normal force at each
point, and k is the selected stiffness constant. This
relationship is illustrated in Figure 5. Each in-trajectory
point is assigned a timestamp that is equal to the
corresponding out-trajectory point’s timestamp.

Following this computation, the in-trajectory
corresponding to a physical out-trajectory is the path that a
haptic probe would need to take in a virtual environment so
that the surface contact point corresponding to that haptic
probe path precisely follows the sampled out-trajectory.

3.2 Trajectory processing

The input to a haptic rendering algorithm is typically a
geometric model of an object of interest and a series of
positions obtained from a haptic interface. For the present
analysis, we obtain a geometric model from the laser-
scanning system described in Section 1, and we present a
stream of positions – collected from our position-tracking
system – through a “virtual haptic interface”. From the
perspective of a rendering algorithm implementation, this
interface plays the role of a haptic device that is able to
report its position in Cartesian space.

Given an in-trajectory computed from a physical out-
trajectory, we can thus simulate a virtual haptic interaction
with an object, which will produce a stream of forces and –
in the case of many common haptic rendering algorithms –
a new out-trajectory (which we refer to as a “rendered
trajectory”), representing the path that a virtual contact
point traveled on the surface of the virtual object.

The computational complexity of this simulation is
identical to the case in which a haptic interface is used

Figure 4. An “out-trajectory” represents the path taken
by a physical probe over the surface of an object; a
haptic rendering algorithm typically approximates this
trajectory with an “in-trajectory” that allows the probe
to enter the virtual object.

228

interactively, allowing assessment of computational
performance in addition to algorithm output.

3.3 Metric extraction

Each time an in-trajectory is fed through a haptic rendering
algorithm, producing a stream of forces and surface contact
point locations, we collect the following evaluation metrics:

• Output force error: the difference between the forces

produced by the haptic rendering algorithm and the
forces collected by the force sensor. This is
summarized as a root-mean-squared Euclidean
distance, i.e.:

∑
=

−=
N

i
ii rFpF

N
e

1

1 rr
 (3)

 Here N is the number of samples in the out-trajectory,
Fpi is the physically-scanned force at sample i and Fri
is the rendered force at sample i. This metric is
referred to as “RMS Force Error” in Section 4. The
physically-scanned forces have been resampled to
align in time with the position samples.

• Output position error: the difference between the

surface contact point position produced by the haptic
rendering algorithm and the physically sampled out-
trajectory. This can also be summarized as a root-
mean-squared Euclidean distance, although we have
found that it is more valuable to collect the cases that
exceed a threshold instantaneous error, representing
“problematic” geometric cases.

• Computational cost: the mean, median, and maximum

numbers of floating-point operations required to a
compute a surface contact point and/or penalty force
and the floating-point operation count for the complete
trajectory. While this is not a truly platform-
independent measure of computational complexity, it
scales well among CPU speeds and is roughly
proportional to computation time on a particular CPU.

We do not present these metrics as a comprehensive
representation of haptic rendering performance, rather we
present them as examples of immediately-useful data that

can be extracted using our data collection system, data
repository, and offline processing approach. We anticipate
that future work and future contributions by the haptics
community will expand the set of available metrics and
assess their correlations to the perceptual quality of haptic
environments.

4. EXPERIMENTS AND RESULTS

We used the analyses discussed in Section 3 to conduct
four experiments that attempt to quantify and compare
haptic rendering algorithms. Specifically, we explored:

1. The relative accuracy and computational cost of a

haptic proxy algorithm and a rendering scheme based
on voxel sampling.

2. The impact of simulated friction on the accuracy of
haptic rendering and the use of ground truth data for
friction identification.

3. The impact of mesh resolution on the accuracy of
haptic rendering.

4. The impact of force shading on the accuracy of haptic
rendering.

For consistency, these analyses have all been performed
using the same model (a scanned plastic duck) and input
trajectory (see Figure 6), which is available in the online
repository.

These results are presented as examples of analyses that
can be derived from our data sets, and their generalization
to a wider variety of rendering algorithms, models, and
trajectories is left for future work and is the primary goal of
our online repository.

4.1 Proxy-based vs. voxel-based rendering

Our approach was used to compare the computational cost
and force errors for a public-domain implementation [1] of
the haptic proxy (god-object) algorithm [15] and a voxel-
based rendering scheme [16], and to assess the impact of
voxel resolution on rendering accuracy. This analysis does
not include any cases in which the proxy provides
geometric correctness that the voxel-based rendering could
not; i.e. the virtual haptic probe never “pops through” the
model.

Fn

pout

pin

-Fn

k

surface
Fn

pout

pin

-Fn

k
-Fn

k

surface

Figure 5. Computation of an in-trajectory point from a
sampled out-trajectory point.

Figure 6. The model and scanned trajectory used for the
experiments presented in section 4.

229

Voxel-based rendering was performed by creating a
fixed voxel grid and computing the nearest triangle to each
voxel center. The stored triangle positions and surface
normals are used to render forces for each voxel through
which the probe passes.

Results for the proxy algorithm and for the voxel-based
algorithm (at two resolutions) are summarized in Table 1,
including the computational cost in floating-point
operations, the initialization time in seconds (on a 1.5GHz
Pentium), and the memory overhead. We observe that the
voxel-based approach offers comparable force error and a
significant reduction in floating-point computation, at the
cost of significant preprocessing time and memory
overhead, relative to the proxy (god-object) approach. It
should be noted that analysis of this particular trajectory
does not capture the fact that the proxy-based approach
offers geometric correctness in many cases where the
voxel-based approach would break down. We will discuss
this further in section 5.

4.2 Friction identification and evaluation

Our approach was used to evaluate the impact of simulated
friction on the accuracy of haptic rendering, using a public-
domain implementation [1] of the friction-cone algorithm
[17]. This analysis also demonstrates the applicability of
our approach for identifying rendering parameters – in this
case a friction radius – from ground-truth data.

This analysis uses the friction cone algorithm available
in CHAI 3D (version 1.31). The in-trajectory derived from
the physical-scanned (raw) trajectory is fed to CHAI for
rendering, and the resulting forces are compared to the
physically-scanned forces. The coefficient of dynamic
friction is iteratively adjusted until a minimum error
between the physical and rendered forces is achieved.
Static (stick-slip) friction was not considered for this
analysis.

Results for the no-friction and optimized-friction cases
are presented in Table 2, including the relative
computational cost in floating-point operations. We
observe that the trajectory computed with friction enabled
contains significantly lower force-vector-error than the no-
friction trajectory, indicating a more realistic rendering,
with only a slightly higher computational cost.

4.3 Impact of mesh resolution

Our approach was used to assess the impact of varying
mesh resolution on the accuracy of haptic rendering. This
is a potentially valuable application of our data, since mesh
resolution is often varied to trade off performance for
accuracy for specific applications, and the use of ground
truth data will allow application developers to select
minimal models that meet application-specific accuracy
bounds.

The haptic proxy algorithm was provided with an in-
trajectory and with eight versions of the duck model, each
at a different tessellation level. The results for each
resolution are presented in Table 3 and Figure 7. We
observe that the error is fairly stable for a large range of
resolutions between 1000 and 140000 triangles, and
increases sharply for lower resolutions.

4.4 Impact of force shading

The analysis presented in Section 4.3 was repeated with
force shading [18] enabled, to quantify the impact of force
shading on the accuracy of rendering this trajectory. Force
shading uses interpolated surface normals to determine the
direction of feedback within a surface primitive, and is the
haptic equivalent of Gouraud shading.

Results are presented in Figure 7, along with the results
assessing the impact of model size on rendering accuracy.
We observe that for a large range of model sizes – between
1k and 10k triangles, a typical range for object sizes used in
virtual environments – force shading significantly reduces
the RMS force error for rendering our duck model. Note
that the impact of force shading is related to the curvature

Algorithm Voxel resolution RMS force error (N) Floating-point ops Init time (s) Memory (MB)
voxel 323 .136 484K 0.27 1.0
voxel 643 .130 486K 2.15 8.0
proxy N/A .129 10.38M 0.00 0.0

Table 1. Accuracy and cost of haptic rendering using proxy- and voxel-based rendering schemes.

Friction radius (mm) RMS force error (N) Flops
0.0000 (disabled) 0.132 10.4M
0.3008 0.067 10.8M

Table 2. Rendering accuracy with and without simulated
dynamic friction.

Model size
(kTri)

Flops RMS force
error (N)

Relative
error

0.2 9.7136M 0.085 9.92
0.5 10.361M 0.031 3.55
1 9.7921M 0.031 3.61
3 10.380M 0.022 2.61
6 10.560M 0.022 2.61
9 10.644M 0.015 1.80
64 10.064M 0.013 1.51
140 9.2452M 0.009 1.00

Table 3. Rendering accuracy of the duck model at
various mesh resolutions, computed using the proxy
algorithm. “Relative error” is computed as a fraction of
the error obtained using the maximum-resolution model.

230

of the object being rendered, and an object with smoothly-
varying curvature (like our duck model) is expected to
benefit significantly from force shading.

5. DISCUSSION

We have provided a series of “ground truth” data sets for
haptic rendering, acquired with a novel scanning paradigm
that allows force and position data to be acquired during a
natural, human-driven scanning motion. We have also
presented an approach for preprocessing this data to make
it suitable as input for a variety of haptic rendering
algorithms, and we have provided a series of example
analyses that demonstrate our approach’s ability to
quantitatively assess haptic rendering systems.

A key application of these data and analyses is to assess
the accuracy of a particular haptic rendering system and to
approximately bound the difference between the forces
experienced by a user through a haptic interface and the
forces the user would experience performing the same
interactions with a real object. This analysis can also be
used to compare haptic rendering algorithms more
objectively: if one algorithm consistently produces a lower
force error relative to a real data set than another algorithm,
it is objectively “more realistic” by our metrics. In this
context, our ground truth data set and preliminary analysis
techniques may play a role in haptics similar to the role
played by [19] in stereo computer vision.

This approach has an application not only in evaluating
published rendering systems, but also in debugging
individual implementations. Debugging haptic rendering
systems is often difficult relative to debugging other
computer systems, due to the hard-real-time constraints, the
nondeterminism introduced by physical devices, and the
difficulty of reliably replicating manual input. Our
approaches and our data sets allow a developer to
periodically test a haptic rendering system via a series of

objective evaluations, and thus rapidly identify problems
and isolate the changes that caused them.

We have also provided an objective series of input data
that can be used to evaluate the computational performance
of an algorithm. In this context, our data sets and analyses
provide a “haptic benchmark”, analogous to the rendering
benchmarks available to the graphics community, e.g.
3DMark (Futuremark Corp). Computational performance
of a haptic rendering system can vary significantly with
input, but it is difficult to describe and distribute the input
stream used to generate a performance analysis result. By
providing a standard data series and a set of reference
results, we present a performance benchmark that authors
can use to describe algorithmic performance. This is
particularly relevant for objectively presenting the value of
optimization strategies for rendering and collision detection
whose primary value may lie in performance
improvements. Performance results are still dependent on
the platform used to generate the results, but this
information can be reported concisely along with results.

The analyses presented here have focused primarily on
“force correctness”, with the ultimate metric of algorithmic
correctness being the accuracy of output forces relative to
ground truth forces. However, the use of standardized, pre-
recorded haptic input data is also suited to assessing the
geometric correctness of rendering algorithms, and for
identifying anomalous cases that cause incorrect behavior
in haptic rendering systems.

For example, figure 8 illustrates a problematic geometry
that can be captured by our analysis approach. In this case,
for certain stiffness values and angles of extrusion (i.e.
“bump sharpness”), the surface contact point produced by
the proxy algorithm becomes “stuck” on the bump,
producing an incorrect trajectory that misrepresents object
geometry. Our approach allows a rapid evaluation of this
geometry using a variety of synthetic models and a variety
of algorithmic parameters (friction values, stiffnesses),
allowing quantification of such problematic cases for
particular renderer implementations. These cases are very
difficult to reliably isolate when a user and physical device
are in the debugging loop.

Our current approach and available data sets, however,
suffer from significant limitations. While a direct
comparison of an algorithm’s output forces to ground truth
forces is expected to correlate to some degree with
perceptual realism, it is not nearly a comprehensive metric.
Furthermore, algorithmic performance and even results are
expected to vary somewhat when collected with a user and
a physical device in the loop, and no set of reference data
can completely capture all possible cases that may have
particular impacts on various rendering algorithms.
Despite these limitations, we propose that a standard
approach to haptic rendering analysis and standard data
series will significantly enhance the quality and objectivity
of haptic rendering system evaluation. In the following
section, we will discuss future work and planned

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1 1 10 100 1000
Model Size (kTri)

R
M

S
Fo

rc
e

Er
ro

r (
N

)

Shading disabled

Shading enabled

Figure 7. Impact of mesh size (logarithmic on the x-axis)
and force shading on RMS Force Error (y-axis) for our
duck model, rendered with the proxy algorithm.

231

improvements to our online repository that will broaden the
applicability of our data and methods.

6. FUTURE WORK

To address the limitations discussed in the previous section,
future work will add both data and additional analyses to
our repository. In particular, we hope to capture a wide
variety of geometries, material types, contact pressures, and
contact trajectories. Subsequent acquisitions will focus on
adding more complex contact shapes (our current probe
approximates a single point of contact).

Furthermore, the simple RMS force error metric used in
this paper is not expected to be an optimal representation of
perceptual accuracy of haptic rendering. Future work will
include the development and psychophysical evaluation of
more appropriate metrics for “haptic correctness”.

Given a sufficient variety of data, our approach also
may have value in the automated optimization of various
parameters used in haptic rendering; the identification of a
dynamic friction coefficient in section 4.2 is a preliminary
example of this application. Future work will include the
generalization of this optimization scheme to a wider
variety of parameters, e.g. static friction, local compliance,
roughness, and haptic texture.

7. DATA REPOSITORY

To provide a standard reference that can be used by the
community for evaluation of haptic rendering systems, the
data, methods, and results discussed in this paper are
publicly available at:

http://jks-folks.stanford.edu/haptic_data/

ACKNOWLEDGEMENTS

Support for this work was provided by NIH grant LM07295, the
AO Foundation, and NSF grants IIS-0308157, EIA-0215887,

ACI-0205671, and EIA-0321057. We also thank our reviewers
for detailed and helpful feedback.

REFERENCES

[1] F. Conti, F. Barbagli, D. Morris, and C. Sewell, “CHAI: An
Open-Source Library for the Rapid Development of Haptic
Scenes”, IEEE World Haptics, Pisa, Italy, March 2005.
[2] SenseGraphics AB, “H3D API”, http://www.h3d.org/
[3] SensAble Technologies, Inc., “OpenHaptics toolkit”,
http://www.sensable.com
[4] U.O. Gretarsdottir, F. Barbagli, and J.K. Salisbury, “Phantom-
X”, EuroHaptics 2003, Dublin, Ireland.
[5] A.E. Kirkpatrick and S.A. Douglas, “Application-based
Evaluation of Haptic Interfaces”, 10th IEEE Haptics Symposium,
2002, Orlando, USA.
[6] A. Guerraz, C. Loscos, and H.R. Widenfeld, “How to use
physical parameters coming from the haptic device itself to
enhance the evaluation of haptic benefits in user interface?”,
EuroHaptics 2003, Dublin, Ireland.
[7] C. Raymaekers, J. De Boeck, and K. Coninx, “An Empirical
Approach for the Evaluation of Haptic Algorithms”, IEEE World
Haptics 2005, Pisa, Italy.
[8] V. Hayward and O.R. Astley, “Performance measures for
haptic interfaces”, Proc Robotics Research: 7th Intl Symp. 1996.
[9] J.E. Colgate and J.M. Brown, “Factors Affecting the Z-Width
of a Haptic Display”, Proc IEEE Conf on Robotics and
Automation, San Diego, CA, USA, May 1994.
[10] D. Feygin, M. Keehner, and F. Tendick, “Haptic Guidance:
Experimental Evaluation of a Haptic Training Method for a
Perceptual Motor Skill”, 10th IEEE Haptics Symposium, 2002.
[11] H.Z. Tan, “Identification of sphere size using the
PHANToM: Towards a set of building blocks for rendering haptic
environments”, Proc ASME Annual Meeting, Vol. 61, Nov 1997.
[12] D. A. Lawrence, L. Y. Pao, A. M. Dougherty, M. A. Salada,
and Y. Pavlou. “Rate-Hardness: a New Performance Metric for
Haptic Interfaces”, IEEE Transactions on Robotics and
Automation, 16(4): 357-371, Aug. 2000.
[13] D. K. Pai, J. Lang, J. E. Lloyd, and R. J. Woodham.
“ACME, A Telerobotic Active Measurement Facility”.
Proceedings of the Sixth International Symposium on
Experimental Robotics, Sydney, Australia, March 1999.
[14] D. K. Pai, K. van den Doel, D. L. James, J. Lang, J. E. Lloyd,
J. L. Richmond, and S. H. Yau, “Scanning Physical Interaction
Behavior of 3D Objects,” in Computer Graphics (ACM
SIGGRAPH 2001 Conference Proceedings), August 2001.
[15] C. B. Zilles and J.K. Salisbury, “A Constraint-based God-
object Method for Haptic Display”, Intl Conference on Intelligent
Robots and Systems, 1995.
[16] W.A. McNeely, K.D. Puterbaugh, and J.J. Troy, “Six degree-
of-freedom haptic rendering using voxel sampling”, Proceedings
of ACM SIGGRAPH 1999, pages 401-408.
[17] W.S. Harwin and N. Melder, “Improved Haptic Rendering
for Multi-Finger Manipulation using Friction Cone based God-
Objects”, Proceedings of EuroHaptics 2002, Edinburgh, UK.
[18] H. B. Morgenbesser and M. A. Srinivasan, “Force shading
for haptic shape perception”, Proceedings of ASME Dynamic
Systems and Control Division, (DSC-Vol.58): 407-412, 1996.
[19] D. Scharstein and R. Szeliski, “A Taxonomy and Evaluation
of Dense Two-Frame Stereo Correspondence Algorithms”,
International Journal of Computer Vision. 47(1/2/3):7-42, April-
June 2002.

Figure 8. This failure case for the Proxy algorithm is an
example of a geometric anomaly that can be captured
and quantified using pre-recorded trajectories.

232

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00167
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00167
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

