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Abstract. This paper presents a multimodal system capable to understand and
correct in real-time the movements of Tai-Chi students through the integration
of audio-visual-tactile technologies. This platform acts like a virtual teacher that
transfers the knowledge of five Tai-Chi movements using feed-back stimuli to
compensate the errors committed by a user during the performance of the
gesture. The fundamental components of this multimodal interface are the
gesture recognition system (using k-means clustering, Probabilistic Neural
Networks (PNN) and Finite State Machines (FSM)) and the real-time descriptor
of motion which is used to compute and qualify the actual movements
performed by the student respect to the movements performed by the master,
obtaining several feedbacks and compensating this movement in real-time
varying audio-visual-tactile parameters of different devices. The experiments
of this multimodal platform have confirmed that the quality of the movements
performed by the students is improved significantly.
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1 Introduction

The learning process is one of the most important qualities of the human being. This
quality gives us the capacity to memorize different kind of information and behaviors
that help us to analyze and survive in our environment. Approaches to model learning
have interested researches since long time, resulting in such a way in a considerable
number of underlying representative theories.

One possible classification of learning distinguishes two major areas: Non-
associative learning like habituation and sensitization, and the associative learning
like the operant conditioning (reinforcement, punish and extinction), classical
conditioning (Pavlov Experiment), the observational learning or imitation (based on
the repetition of a observed process) [1], play (the perfect way where a human being
can practice and improve different situations and actions in a secure environment) [2],
and the multimodal learning (dual coding theory) [3].

Undoubtedly, the imitation process has demonstrated a natural instinct action for
the acquisition of knowledge that follows the learning process mentioned before. One
example of multimodal interfaces using learning by imitation in Tai-chi has been



applied by the Carnegie Mellon University in a Tai-Chi trainer platform [4],
demonstrating how through the use of technology and imitation the learning process
is accelerated.

The human being has a natural parallel multimodal communication and interaction
perceived by our senses like vision, hearing, touch, smell and taste. For this reason,
the concept of Human-Machine Interaction HMI is important because the capabilities
of the human users can be extended and the process of learning through the
integration of different senses is accelerated [5] [6] [7]. Normally, any system that
pretends to have a normal interaction must be as natural as possible [8] [9].However,
one of the biggest problems in the HMI is to reach the transparency during the
Human-Machine technology integration.

Fig. 1. Multimodal Platform set up, A) 3D sound, B) Kinematics Body C) Vibrotactile device
(SHAKE) D) Vicon System E) Virtual Environment

In such a way, the multimodal interface should present information that answers to
the “why, when and how” expectations of the user. For natural reasons exists a
remarkable preference for the human to interact multimodally rather than unimodally.
This preference is acquired depending of the degree of flexibility, expressiveness and
control that the user feels when these multimodal platforms are performed [9].
Normally, like in real life, a user can obtain diverse information observing the
environment. Therefore, the Virtual Reality environment (VR) concept should be
applied in order to carry out a good Human-Machine Interaction. Moreover, the motor
learning skills of a person is improved when diverse visual feedback information and
correction is applied [10].

For instance the tactile sensation, produced on the skin, is sensitive to many
qualities of touch. Lieberman and Breazeal [11] carried out, for first time, an
experiment in real time with a vibrotactile feedback to compensate the movements
and accelerate the human motion learning. The results demonstrate how the tactile
feedback induces a very significant change in the performance of the user. In the same
line of research Boolmfield performed a Virtual Training via Vibrotactile Arrays[12].



Another important perception variable is the sound because this variable can
extend the human perception in Virtual Environments. The modification of
parameters like shape, tone and volume in the sound perceived by the human ear [13],
is a good approach in the generation of the description and feedback information in
the human motion.

Although a great grade of transparency and perception capabilities are transmitted
in a multimodal platform, the intelligence of the system is, unquestionably, one of the
key parts in the Human-Machine interaction and the transfer of a skill. Because of the
integration, recognition and classification in real-time of diverse technologies are not
easy tasks, a robust gesture recognition system is necessary in order to obtain a
system capable to understand and classify what a user is doing and pretending to do.
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Fig. 2. Architecture of the Multimodal Tai Chi Platform System

2 System Implementation

This paper presents a multimodal interface that teaches to novel students, five basic
tai chi movements. Each movement is indentified and analyzed in real time by the
gesture recognition system. The gestures performed by the users are subdivided in n-
states (time-independent) and evaluated step-by-step in real time by the descriptor
system. Finally, the descriptor executes audio-visual-tactile feed-back stimuli in



order to correct the user’s movements. Fig. 1 presents the interface that is composed
by: The hardware and software of the 3D tracking optical system (VICON), the
gesture recognition system and the description of motion (both running in Matlab
Simulink), a graphical scenario developed in XVR, a 3D sound system and the
wireless vibrotactile devices (SHAKE). The general architecture of the multimodal
platform is shown in Fig. 2.

2.1 Data acquisition

The motion of the Tai-Chi student was tracked with the VICON system. This system
is an optical device which provides millimeter accuracy in the 3D space through the
use of passive reflective markers attached to the body at 300Hz of sampling
frequency. Sometimes, due to the markers obstructions in the human motion, the data
information is lost. For this reason, the “cleaning algorithm” described in [14], was
implemented. An inverse kinematics of fourteenth DOFs represented by the upper
part of the body is computed. A calibration process is completely required in order to
identify the actual position of the markers and adjust the kinematics model to the new
values. Therefore, a fast (Ims) autocalibration process was designed in order to
obtain the initial position of the markers of a person placed in a military position
called “stand at attention”. The algorithm checks the dimension of his/her arms and
the position of the markers. The angles are computed and finally this information is
compared with to the ideal values in order to compensate and normalize the whole
system.
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Where
n=dimension of feature vector
n i= number of gesture’s substates

Fig. 3. PNN architecture used to estimate the most similar gesture’s state from the current
user’s body position

2.2 Real-Time Gesture Recognition Process

In order to recognize the gesture performed by the user, a state space model approach
was selected [15][16]. Normally, the principal problem to model a gesture in the state
based approach, is the characterization of the optimal number of states and the
establishment of their boundaries. For each gesture, the training data is obtained
concatening the data of five demonstrations. A dynamic k-means clustering on the



training data defines the number of states and their spatial parameters of the gesture
without temporal information [17]. This information from the segmented data is then
added to the states and finally the spatial information is updated. This produces the
state sequence that represents the gesture. The analysis and recognition of this
sequence is performed using a simple Finite State Machine (FSM) [18], instead of use
complex transitions conditions which depend only of the correct sequence of states
for the gesture to be recognized and eventually of time restrictions i.e., minimum and
maximum time permitted in a given state.

The novel idea is to use for each gesture a PNN to evaluate which is the nearest
state (centroid in the configuration state) to the current input vector that represents the
user’s body position. The input layer has the same number of neurons as the input
vector and the second layer has the same quantity of hidden neurons as states have the
gesture. In our architecture (Fig. 3), each class node is connected just to one hidden
neuron and the number of states (where the gesture is described) defines the quantity
of class nodes. Finally, in the last layer, the class (state) with the highest summed
activation is computed. A number of 12 variables were used in our configuration
space: There are 2 distances between hands and 2 between elbows. 2 Vectors created
from the XYZ position from the hands to the chest and 2 Vectors created from the
XYZ positions from the elbows to the chest.

2.3 Real-Time Descriptor Process

The comparison and qualification in real-time of the movements performed by the
user is computed by the descriptor system. In other words, the descriptor analyzes the
differences between the movements executed by the expert and the movement
executed by the student, obtaining the error values and generating the feedback
stimuli to correct the movement of the user. Each pattern movement is characterized
for a sequence of states which is formed by 18 variables and performs the comparison
of the following information: 72 Angles: Elbows(2), Wrists(4) and Shoulders(6), 2
Distances: Distance between hands(1) and elbows(1) and 4 Positional vectors: 2
vectors created from the XYZ position of the hands to the chest and 2 Vectors created
from the XYZ positions of the elbows to the chest. Each state or subgesture is
recognized in real time by the gesture recognition system during the performance of
the movement. Using the classic feed-back control loop during the experiments was
observed that the user feels a delay in the corrections. For that reason, a feed-forward
strategy was selected to compensate this perception. In this methodology when a user
arrives at one state of the gesture, the descriptor system creates n-substates and carries
out an interpolation process to compare the actual values with respect to the values in
the sub-state (n+1) of the pattern value, creating a feed-forward loop which estimates
in advance the next correction values of the movement. The error is computed by:

Berror = [P(n+ 1) —U®)] * Fn Q)

Where Gerror is the difference between the pattern and the user, P is the pattern value,
U is the user value, Fu is the normalize factor and n is the actual state.



Fig. 4. VR environment , A) Initial Screen, 5 avatars performing Tai-Chi movements, B)
Training session, two avatars, one is the master and second is the user. C) Distance of the
Hands, D) Right Hand Position.

2.4 Virtual Reality Platform

The virtual environment platform which provides the visual information to the user
was programmed in XVR. There are 3 different sequences involved in this scenery.
The first one is the initial screen that shows 5 avatars executing different Tai Chi
movements. When a user tries to imitate one movement, the system recognizes the
movement through the gesture recognition algorithm and passes the control to the
second stage called “training session”. In this part, the system visualizes 2 avatars,
one represents the master and the other one is the user. Because learning strategy is
based on the imitation process, the master performs the movement one step forward to
the user. The teacher avatar remains in the state(z+1) until the user has reached or
performed the actual state(n). With this strategy the master gives the future movement
to the user and the user tries to reach him. Moreover, the graphics displays a virtual
energy line between the hands of the user. The intensity of this line is changing
proportionally depending on the error produced by the distance between the hands of
the student. When a certain number of repetitions has been performed, the system
finishes the training stage and displays a replay section which shows all the
movements performed by the student and the statistical information of the
movement’s performance. Fig. 4 (A)(B) shows the virtual Tai-Chi environment.

2.5 Vibrotactile Feedback System

The SHAKE device was used to obtain wireless feedback vibrotactile stimulation.
This device contains a small motor that produces vibrations at different frequencies.
In this process, the descriptor obtains the information of the distance between the
hands, after this, the data is compared with the pattern and finally sends a proportional



value of the error. The SHAKE varies proportionally the intensity of the vibration
according to error value produced by the descriptor (1 Hz — 500 Hz). This constraint
feedback is easy to understand for the users when the arms have reached a bad
position and need to be corrected. Fig. 4 (C) shows the ideal distance between the
hands (green), the distance between the hands performed by the user (blue) and the
feed-back correction (red).
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Fig. 5. The 5 Tai-Chi Movements

2.6 Audio Feedback System

The position of the arms in the X-Y plane is analyzed by the descriptor and the
difference in position between the pattern and the actual movement in each state of
the movement is computed. A commercial Creative SBS 5.1 audio system was used
to render the sound through 5 speakers (2 Left, 2 Right, 1 Frontal) and 1 Subwoofer.
In this platform was selected a background soft-repetitive sound with a certain level
of volume. The sound strategy performs two major actions (volume and pitch) when
the position of the hands exceeds the position of the pattern in one or both axes. The
first one increases, proportionally to the error, the volume of the speakers in the
corresponding axis-side (Left-Center-Right) where is found the deviation and
decreases the volume proportionally in the rest of the speakers. The second strategy
varies proportionally the pitch of the sound (100-10KHz) in the corresponding axis-
side where was found the deviation. Finally, the user through the pitch and the
volume can obtain information which indicates where is located the error and its
intensity in the space.

3. Experimental Results

The experiments were performed capturing the movements of 5 Tai-Chi gestures (Fig.
5) from 5 different subjects. The tests were dived in 5 sections where the users
performed 10 repetitions of the each one of the 5 movement performed. In the first
section was avoid the use of technology and the users performs the movement in a
traditional way, only observing a video of a professor performing one simple tai-chi
movement. The total average error TAVG is calculated in the following way :
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Where Ns is the total number of subjects, » is the total number of states in the gesture
and @ is the error between the teacher movement and the student.

Fig. 6 (A) shows the ideal movements (Master Movements) of the gesture number 1
and (B) represents the TAVG of the gesture 1 executed by the 5 subjects without
feedback. The TAVG value the 5 subjects without feedback was around 34.79%
respect to the ideal movement.

Normalized Value

Normalized Value

Fig. 6. Variables of Gesture 1, A) Pattern Movement, B) Movement without feedback, C)
Movement with Visual feedback and D) Signals with Audio-Visual-Tactile feedback.

In the second stage of the experiments, the Virtual Reality Environment was
activated. The TAVG value for the average of the 5 subjects in the visual feedback
system presented in Fig. 6(C) was around 23.13%. In the third section the Visual-
Tactile system was activated and the TAVG value was around 75.70% respect to the
ideal gesture. In the next stage of the experiments, the visual- 3D audio system was
performed and the TAVG value for the 5 subjects in the audio-visual feedback system
was around 16.36% respect to the ideal gesture. The final stage consists in the
integration of the audio, vibrotactile and visual systems. The total mean error value
for the average of the 5 subjects in the audio-visual-tactile feedback system was
around 73.38% respect to the ideal gesture. Fig. 6 (D) shows the results using the



whole integration of the technologies. Finally, Fig. 7 presents an interesting graph
where the results of the four experiments are indicated. In one hand, as it was
expected, the visual feedback presented the major error. In the other hand the
integration of audio-visual-vibrotactile feedback has produced a significant reduction
of the error of the users.
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Fig. 7. Average Errors
4. Conclusions

A novel methodology of a real-time gesture recognition and descriptor used in a
multimodal platform with audio-visual-tactile feedback system was presented in this
paper. The aim to obtain a robust gesture recognition system capable to recognize 5
complex gestures and divide them in different subgestures was fulfilled. Moreover,
the function of the real-time descriptor offers the possibility to analyze and evaluate,
in a separate and integrate way, the behavior of movements from the different
variables related to the feed-back system (audio, vision and tact). The results of the
experiments have shown that although the process of learning by imitation is really
important, there is a remarkable improvement when the users perform the movements
using the combination of diverse multimodal feedbacks systems.

5. Future Work

Once the multimodal platform has demonstrated the feasibility to perform the
experiments related to the transfer of a skill in real-time, the next step will be focused
in the implementation of a skill methodology which consists, in a brief description,
into acquire the data from different experts, analyze their styles and the descriptions
of the most relevant data performed in the movement and, through this information,



select a certain lessons and exercises which can help the user to improve his/her
movements. Finally it will be monitored these strategies in order to measure the
progress of the user and evaluate the training. These information and strategies will
help us to understand in detail the final effects and repercussions that produces each
multimodal variable in the process of learning.
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