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Abstract— The present paper deals with a system architecture
and a digital format to support the acquisition, storage and
transfer of human skills. Virtual Environments and Haptic in-
terfaces will be addressed as target platforms for the capturing
and rendering of skills.

There are several methodologies for approaching definition
and modelling of skills, and the present work will focus on a
specific approach that merges evidences from human sciences
with present approaches in intelligent robotics and machine
learning.

This work presents a supporting tool that enables researchers
to model, analyse and control the skill transfer process. In
addition this work will provide an overview of a skill transfer
framework, and information related to the models of skill
representation that are being employed.

I. INTRODUCTION

The use of computer as a means for learning begun in
the middle of 60s. At that time the term of Computer-
Assisted Instruction (CAI) has been coined in order to
address programs that were based on ”question and answer”
tutoring approaches [1].

The advent of computer based multimedia and Internet
has deeply changed such an approach in the following 40
year period. Today with the term e-Learning we address
complete interactive, online training programs that allow
remote trainee to undertake distance learning accordingly to
well designed pedagogical approaches.

Accordingly to Gagne[2] five instructional areas can be
found in instructional design literature:

1) Intellectual / procedural knowledge;
2) Cognitive relational abilities;
3) Symbolic and declarative knowledge;
4) Motor skills in performing physical tasks;
5) Attitudinal skills;
While other areas can be taught by means of classic

CAI approaches, motor skills can only be transferred with
complex human interfaces that allow user to be immersed
into digital environment and apprehend from the interaction
with the interface.

The term enactive knowledge [3] underlies this kind of
learning process while the Enactive Society [4] promotes
the development of immersive virtual environment for the
manipulation of this knowledge.

In the past years several approaches have been proposed
to employ robot and haptic devices in training. Yokokoji[5]
proposed an integrated system named “What you see is what
you feel (WYSIWYF)”. WYSIWYF records sensorimotor
actions from experts and plays them back to unexperienced

Fig. 1. Training component in the Juggling application

used using D-Base recording of compliance information
and a specialized impedance controller that forces the users
to follow exemplary data. A similar approach that allows
generalization was introduced by Sano [6] in 1999 in order
to model the experts data into a set of Neural Networks.

Recently the issue of training is being supported even more
by attempt to use machine learning and automated techniques
to capture and represent the quality of motion of human
gestures.

Buss in 2008 [7] extended the copy and playback strat-
egy with a more complex trainer/trainee semi-teleoperated
architecture, that allowed the trainer to intervene on the
trainee perception by means of an hybrid controller that
mixes up environmental and trainer stimuli to present the
trainee feedback. The use of K-Means clustering also allowed
to support the training in case of force replication.

Calinon [8] in 2006 has proposed an integrated archi-
tecture which can help robot to behave like human by
means of a training by showing. The proposed system extract
relevant features from the observation of samples and is able
to generalize to different contexts. The Calinon’s system
relies on a probabilistic description defined in a support
space (determined with Principal Component Analysis). The
behavioral description is then designed with a mixture of
density function (Gaussian and Bernoulli) which describes
the spatio-temporal correlation across different modalities
and cognitive relationship in observation action. The ability
to generalize motion is demanded to the use of a Gaussian
Mixture Regression.

However the research produced so far do not address the
issue to manage and support a representation framework
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which enables to analyze the human skills as belonging to an
extensive digital representation. In this work we shall review
some of the modelling efforts available so far and correlated
them into a unique framework which allow us to design and
support experiments for the capturing and transfer of skills.

In contrast with what available so far, our approach is
focused on a human centered design which correlates ele-
ments of the digital modelling with evidence and background
used in human science. This is mainly motivated since out
objective is to wrap the knowledge related to human skills
for the training of other humans, and to design multimodal
system to achieve such a training.

In the following of this paper we will address the frame-
work design principles we adopted in order to make such
complex systems more understandable; the relationships with
body sensori-motor properties and related cognitive states;
the methodology that will be adopted to capture and model
experts styles; the strategies under development for training.
The implementation of the overall structure will also be
described on a practical system to test and transfer skill
related to juggling.

II. THE UNIFIED FRAMEWORK

A sensorimotor skill is difficult to be described. The mod-
eling of a specific act of doing represents a challenge in some
fields of research such as cognitive science, psychology,
robotics, bio-mechanics and other behaviour-related studies.
Any description requires an in depth correlation amongst the
action performed and the user perception[9]. In addition both
of them should take into account different factors:

• Identification and definition of the user environment
interaction: the amount of information to model a proper
skill interaction, both in terms of observable items and
controllable actions, is supposed to rely on a reduced
set of information than those measurable in the envi-
ronment;

• Identification and classification of styles: relevant skills
can successfully be achieved through different and rel-
evant expert styles. Modeled skills should cope with
the variability of actions along the limit cycles that the
rhythmic repetition identifies.

• Implementing training, requires the setup of particu-
lar control strategies that feedback styles information
trough the simulation embedded. In order to provide
training online, new specific interactive tools are re-
quired.

A. Environment Interaction

Scientific literature reports several models to represent the
interaction of an agent in an environment. In our approach
we searched for a representation that can easily be extended
to cope with the above points. The chosen model was
introduced by Warren [10] and is summarily represented in
2. Warren allowed three separate dynamical descriptions to
identify the environment and the user response. In addition
relationships of perception and action are modeled separately.

Fig. 2. Extended Warren model

In this model the behavior of an agent in general is being
modeled in terms of exchanges of information the agent itself
and the Environment, each described as a dynamical system.
The Environment has an internal state ‘e’ and a descriptive
function ‘φ’ that are mapped onto the agent through an
observation function λ. Similarly the internal state of the
user ‘b’ evolves with the ‘ψ’ function and is mapped in the
environment with a set of forces via the ’γ’ function. Here
two vectors of parameters guide the cognitive response (c)
in performing the skill and constraint the physical limitation
(p) in terms of fitness and physical abilities. Additionally the
parameters ’c’ are time varied by the evolution of the user
cognition, here represented as a regular discrete time update
function ‘χ’.

Even if the Warren model is quite limited in terms of
insight for the internal functions: ‘ψ, λ, χ, γ’, as we
shall see it offer the opportunity to enhance the interaction
model towards a digital mediated interaction which handles
separately the factors identified for the Unified Framework.

It is here particularly relevant that in an approach using
multimodal interfaces we can replace completely (or par-
tially) the real environment with a virtual environment whose
behavior and dynamics is defined by code and completely
known to the designer.

The introduction of a virtual environment therefore allow
us to have a knowledge not only of the φ function but also
for λ and γ. The user behavioral functions (ψ and χ) still
unknown.

B. Capture of Styles

Capture of style is more than capture of expert data. From
the preliminary experiments of Johansson[11] more than 30
year ago, which demonstrated that information on gestures
and style can be encoded in a reduced set of variables, in the
past decade a lot of efforts have been performed to classify
and identify human motion from observation. Nowadays,
styles can be identified and modeled in detail. For instance,
when considering walking the biological motion, the tracking
of a reduced representation of the human pose[12] can be
decomposed into phases and clustered into different styles.
For instance one identification analysis on styles of walking
that allows abstracting from normalization is presented by
Troje[13].

One common approach to model and classify styles in
computer vision is to associate them accordingly to what are
called motion signatures [14], a sort of motion invariants
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that may be determined on signals by sort of processing
of captured data. Pattern simplification techniques, such as
PCA[15], and pattern recognition are commonly employed
in the determination of the action style.

Our approach distinguishes itself from existing ones in
the fact that the recognition is not completely demanded
to automated tools but relies on a set of action sub-skills
and guided style information provided by human scientists
and experts in the application field. To understand how here
information is modeled and stored we premise the levels of
representation that will be employed: within the framework.
In particular we distinguish data accordingly to four different
levels: Variables, Features, Sub-Skills and Skills.

Relevant Variables: only part of the raw data collected
during the interaction is stored and employed. The amount
of information is enough to code the relevant inputs that
defines an action but neglects all those elements considered
not to affect the expression of the skill. This is achieved by
creating a metric which is dependent on the results achieved
in the target space more than focused on the user motion
space. Each selection is therefore depending from an in depth
analysis of the task and the consequence that an action may
have on final results. This selection is typically performed
with experienced trainers (masters) who cooperate in the
variable design. For instance style and posture in grasping
may be relevant in surgery operation and could be neglected
in power actions.

Features: are extracted from variables by following the
indications discussed with experts’ trainers. The introduction
of the features in the computing process allow us to have a
better targeted process that makes distinction between style
components and better focuses on the styles properties that
are considered of primary importance by trainers. In oppo-
sition to what it could resemble at a first sight features do
not simplify the representation of the task, they increase the
dimension of the representation vector and introduce more
elements to be inspected. In the other side features greatly
simplify and improve the analysis of the performances. Each
feature is designed in order to have particular mapping with
analysis tools (the ‘performance indicators’) that highlight
the quality of execution of a particular phase of the skill.
Two types of features are considered here: sensori-motor
features (SMF) and discrete-event features (DEF) that outline
the presence of particular states of interaction during the
operation in the virtual environment;

Digital sub-skills: the introduction of DEF and SMF
concepts in the mathematical modeling allows us to provide
an operational guideline to the above Warren’s model. In
particular we expect that the above feature may catch a list
of relevant points that could be observed in the user physical
and cognitive spaces ({b}, {c}) and in their characteristic
evolutionary function (χu, ψu). Hence using features we
expect to have a methodology to qualitatively sample the
hidden dynamics in the points the trainers consider to be of
high relevance for the performing of action. This approach
has been structured by introducing the concept of sub-
skills. In total 14 different categories of sub-skills[16] have

Fig. 3. Digital Trainer extension: implements trainer and expert knowledge
as an embedded feedback into VR training applications.

been introduced in order to measure different properties,
organizing them between motor (8) and cognitive (6) sub-
skills. The selection process of the sub-skills starts from
a preliminary hierarchical analysis of the target task and a
mapping from every sub-task into a set of sub-skills that from
expert knowledge are relevant for the purpose of the inves-
tigation. Sampling of the above mentioned relevant points
is gathered indirectly by means of what have been called
“performance indicators”. During exercises, each low level
multidimensional point, mapped through the performance
indicators, produces a statistical distribution that will be here
defined as a“sharp”;

Digital skills: the introduction of the digital sub-skills
allows at once to correlate trainers and typical motor science
indicators with the analytical model employed for the repre-
sentation of the skill. This is performed by decomposing the
user skills into the relevant sub-skills that are required for the
specific task, then defining performance tools that measure
the distance among performers. This approach allows us to
redefine the digital signature of an expert style as the set of
“sharps” that a specific expert sign into the system when
repeating a task with a given style. The use of “sharps”
allows us to create a mathematical description for given
styles and to define a notion of style distance as the joint
probability that a given set of points belongs to a “sharp”:

dx
C#

= P (x ∈ C#)

C. Digital Training

The Warren approach can be further extended towards a
new model that fully support for a Digital Trainer. The most
relevant properties of the Digital Trainer is that it allow the
user to Learn by Doing, by gathering task information from
the direct interaction with the Environment and not from
commands from the Trainer.

In a first instance the digital trainer can be added to
the interactive environment in the same manner a typical
trainer interact with a trainee. He is another subject op-
erating in the same environment, and therefore possesses
it own observation and action linkages toward the same
environment. Here the behaviour of the trainer dynamics
( ψDT ) has a completely different role from the user
one. Trainer feedback should complement user action with
a proper feedback that enhance or accelerate the learning
capacity. The use of the style models here is used to measure
the distance (as explained before) from reference models and
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compute reaction models that helps the user to undertake the
proper corrective action.

The digital trainer however can have much more possibil-
ities that a standard trainer to undertake an in depth commu-
nication with the trainee due to the following motivations:

• the observation of the subject are not simply based on
the observation of user action in the environment and
can be enhanced with real-time biometric measurements
(EEG, EMG, ECG, Oxygen consumption, Eye Track-
ing,. . . ) that provide a more accurate discrimination of
condition that determine user response;

• the action of the trainer on the environment are not
limited to a physical interaction, but being a digital
entity in a digital environment, can affect deeply the
behaviour of the environment. It is of a particular value
the capability for the trainer to control some real-time
parameters of the environments simulation and status
rendering;

• the trainer feedback can also bypass environment me-
diated communication and control specific rendering
devices (vibrotactile, haptic, sound, terminals,. . . ) that
reflects trainer information directly to the user percep-
tion.

III. IMPLEMENTATION

The implementation of this framework has been performed
by means of three different modules: a skills repository
system, a computational framework, and an interactive VE.
All these components are required and communicates each
other during the setup of digital training exercises.

A. The skills repository system

The repository system is a Database architecture based on
SQlite [17]. The choice of SQlite as a reference DBase was
explicitly done in order to embed the data capture and to
maintain the data collection into a unique structure. SQlite
has in this operation some unique features in terms of per-
formances, portability, deploy languages and manipulation
tools that makes it the best platform to employ. However
as for all Database engines, it is freely manipulable from
users and requires some additional constraints in order to
maintain the information clearly ordered. This feature has
been employed on the SQlite by means of an access interface
called “DataKit” that helps to organize information in the
store and retrieval operations (see figure 4).

DataKit provide the user with clear functionalities to store,
tag and retrieve data from the repository. For instance, when
considering the experiments, the DataKit structure allows to
record the relevant variables with a coherent set of infor-
mation (meta-tags) that uniquely identifies both experiment
details and the setup conditions that have been associated
with the environment configuration and the training protocol.
This operation is of particular values since training requires
the access to data logs across sessions in order to compare
progresses and effects of specific environments, protocols,
accelerators and digital trainers. The use of the metatags
helps the recover and process of information in this sense,

Fig. 4. SQlite DataKit: allows interoperable application from different VR
technologies to share and to interoperate with a common set of information
representation

Fig. 5. SQlite DataKit: allows interoperable application from different VR
technologies to share and to interoperate with a common set of information
representation

by allowing the protocol designer to call back and process
the whole information related to a common protocol, setup
or sub-skill, and to compare differences among expert style
performances and user progresses.

Class Type Data Algorithms
Variables Yes -
Features Yes Extracting Algoritms
Sub-Skills - Performancing Tools
Expert styles Sharps Relevant point extractors
Skills Structure Learning curves

TABLE I
CLASSES OF DATA STORED IN THE REPOSITORY SYSTEM

Raw Variable data are only the entry point of the services
offered by the repository system, they store the results
gathered from experimental session, but do not highlight the
semantic knowledge that is encoded in them. The repository
systems offer therefore additional level of information stor-
age in order to embed in the repository features, sharps, sub-
skills and skills structure together with relevant algorithms
that are required to manipulate this information.

This is achieved by allowing that the low level information
originally acquired from experiments can be processed and
restored in the system by a set of internal and external
toolboxes. Meta-tags during the processing operation are
preserved and enhanced in order to maintain a clear list of
dependencies on how the information has been produced.

Figure 5 highlights how the repository system is expected
to be updated by means of the internal and external process-
ing unit. The Enactive Virtual Environment is the interactive
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environment the user in operating in, this environment sends
variables information to the repository by regular streaming
of data. Such information is archived in the repository by
storing both the streaming information and the structural
metadata that have been explained above. At this step three
kinds of operation are feasible: other processing, inner pro-
cessing and fruition. In outer processing mode, an external
program will provide to handle the data information to create
higher level of representation (as in table I). Inner processing
mode is similar but exploit the functionality of the DataKit to
execute mathematical algorithms stored inside the database.
Finally fruition operations allow to retrieve information for
analysing the progress of training and/or provide the “Digital
Trainer” feedback to the virtual environment.

B. The computing framework

Processing of information related to skills requires to
merge, to interoperate and to setup a lot of different types
of algorithms, from Principal Component Analysis (PCA)
to Dynamic Time Warping (DTW), from Hidden Markov
Models (HMM) to K-means. Being most of them already
available on from elsewhere, We considered to be a nonsense
develop them from the scratch or in a new environment. For
this reason one of the relevant choice of the framework was
to demand and rely the computing activities to a common
computational program that already makes available most of
these algorithms (the MATLAB c©program).

A porting of the DataKit interface was therefore provided
toward this environment and the internal Simulink schematic
designer. In such a way it is possible at anytime to connect
the repository, manipulate data and store them back accord-
ingly the philosophy of the outer processing.

However, given the complexity of the data handled by the
framework some changes to the methodologies to access and
handle data have been required. Different types of S-Function
blocks have been developed in order to recover data from
the repository (stream and sharps Sources Blocks), Store
data back while preserving meta-tags hierarchy (stream and
sharp Sinks Blocks), Visualize information (performances
Display Blocks), Connect to virtual environment devices
(IO Connector Blocks) and access to the transformation
algorithms.

These schematics run and interact with the external train-
ing environment. For performance issues most of the blocks
therefore do not run at any arbitrary frequency but share
a triggering mechanism that allow them to share data only
when update are required and/or available.

In addition some blocks require to share representation
information that is more complex that the streaming data
embedded in the connectors. In such a case the connector
only share a pointer to the information description that will
be handled properly by the visualization and computing
blocks. For further details we demand to [18].

C. The Virtual Environment

Any virtual environment that implements the use of the
Digital Repository as defined above can be used with the

presented framework. Within the context of the SKILLS-IP
the following environments will be supported: XVR [19],
OpenSG and X3D with Avalon Instant Reality [20].

The virtual environment integration however requires that
the VE should allow the repository system to interoperate
environment accelerators. Within the framework of a training
protocol, a training accelerator defines how one or more
specific VE technologies can be used in order to: Reduce
the Training/learning time and/or Improve the skill perfor-
mances. It is expected that accelerators do not alter the basic
sensori-motor information exchanged during task execution,
but provides a richer set of information the user can exploit
to converge better or faster to the desired style. Accelerators
should take as input information the target style (in terms of
sharps) and the relevant points (computed from features) hit
by the trainee, and define a feedback strategy to correct the
motion.

Several types of accelerators are presently under investi-
gation they include: vibrotactile stimulation, control of task
timings, cognitive highlights, sound based synchronization
(metronome), haptic guidance and different kind of visual
guidance.

IV. A PRACTICAL EXAMPLE

A trainer for juggling skills has been setup. Learning to
Juggle can easily be performed by practice and following the
indication provided into several Internet sites. However for
the sake of the experiment we would like to check if juggling
skills could be learned in an instruction-less manner only
practicing with the strategies described in this framework.
There is no practical benefit in doing this for juggling except
the fact that we assume to demonstrate the system being
able automatically to convert training information from an
empirical self learning to a system guided teaching.

Among possible tasks the three ball cascades style has
been selected. Figure 1 shows the typical components em-
ployed in task operation: a couple of sensorized gloves
monitors the motion of the user hands and the closure of the
fingers. One additional sensor tracks the motion of the head
to correlate equilibrium information. All these information,
and the spatial positions of the three balls are gathered as
variables.

Features extraction is based on relevant scientific literature
they include zenith analysis, velocity vector of thrown, and
timing of catches at a first analysis which demonstrated to
be good indicators to correct typical defects of skills [21].
To further improve the quality of analysis and the motion
envelopes that caused errors, Shannon index, principal Com-
ponent Analysis [22] and other tools are being tested.

The MATLAB and Simulink repository design allowed
us to integrate with the data store and retrieval with the
mathematical model of the three ball cascade. The Figure
6

Four types of accelerators are presently under test: a
velocity controller, which modulates the effect of the grav-
ity acceleration accordingly to the user performances, a
visual/sound synchronizer that highlights with sound and
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Fig. 6. Example of analysis performed by the system presenting the
performance of the user, offline on the left, in real-time on the right.
In particular in the right picture are being shown various elements used
for generating the feedback in the virtual environment like bi-manual
coordination (top center), errors of trajectories (top left), zenith points and
sequencing errors (top right).

color effects the rhythm required for tossing and catching
balls, a vibrotactile stimulator that enhances the catching
sensation and allows better synchronization of audio stimuli
and physical perception, and a trajectory envelope plotter
that highlight the motion of the balls and facilitate plan of
reaching operation.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

The present paper has shown the current development
at out center to design and test a common framework for
the handling of multimodal training system. The frame-
work designed is an hybrid approach between techniques
coming from robotics and visual computation that prefer
purely algorithmic solutions and those in use in motion and
cognitive sciences that are strictly designed on cognitive and
sensorimotor aspects.

The resulting framework allows conveying external exper-
tise in the data manipulation and to manage data always with
direct contextual interpretation. As a result, it is possible to
design complete training system that exploit the analysis data
to feed back training information to the users.

The framework described in this work has been designed
within the activities of the SKILLS project. SKILLS takes
into account five application domains for the setup of seven
demonstrators: rowing, juggling, surgery, robotics rehabilita-
tion, and industrial training.

B. Future Works

The practical example described therein only takes into
account a preliminary design of the Juggling demonstra-
tor. In the forthcoming period, this methodology will be
implemented in all the above demonstrators and will be
complemented with training protocols to assess the quality
of on skill transfer in each of the identified domains. Further
information will be soon available on the SKILLS project
Website[23].
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