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1. Introduction  

Skill has many meanings, as there are many talents: its origin comes from the late Old 
English scele, meaning knowledge, and from Old Norse skil (discernment, knowledge), 
even if a general definition of skill can be given as “the learned ability to do a process well” 
(McCullough, 1999) or as the acquired ability to successfully perform a specific task.  
Task is the elementary unit of goal directed behaviour (Gopher, 2004) and is also a 
fundamental concept -strictly connected to “skill”- in the study of human behaviour, so that 
psychology may be defined as the science of people performing tasks. Moreover skill is not 
associated only to knowledge, but also to technology, since technology is -literally in the 
Greek- the study of skill. 
Skill-based behaviour represents sensory-motor performance during activities following a 
statement of an intention and taking place without conscious control as smooth, automated 
and highly integrated patterns of behaviour. As it is shown in Figure 1, a schematic 
representation of the cognitive-sensory-motor integration required by a skill performance, 
complex skills can involve both gesture and sensory-motor abilities, but also high level 
cognitive functions, such as procedural (e.g. how to do something) and decision and 
judgement (e.g. when to do what) abilities. In most skilled sensory-motor tasks, the body 
acts as a multivariable continuous control system synchronizing movements with the 
behavioural of the environment (Annelise Mark Pejtersen, 1997). This way of acting is also 
named also as, action-centred, enactive, reflection-in-action or simply know-how. 
Skills differ from talent since talent seems native, and concepts come from schooling, while 
skill is learned by doing (McCullough, 1999). It is acquired by demonstration and sharpened 
by practice.   Skill is moreover participatory, and this basis makes it durable: any teacher 
knows that active participation is the way to retainable knowledge.  
The knowledge achieved by an artisan throughout his/her lifelong activity of work is a 
good example of a skill that is difficult to transfer to another person. At present the 
knowledge of a specific craftsmanship is lost when the skilled worker ends his/her working 
activity or when other physical impairments force him/her to give up. The above 
considerations are valid not only in the framework of craftsmanship but also for more 
general application domains, such as the industrial field, e.g. for maintenance of complex 
mechanical parts, surgery training and so on.  

Source: Human-Robot Interaction, Book edited by: Daisuke Chugo,  
 ISBN 978-953-307-051-3, pp. 288, February 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com



 Human-Robot Interaction 

 

226 

Afferent

Channel

Efferent

Channel

High level
cognitive functions

Low level
cognitive functions

Task flow execution

HUMAN

Task flow

WORLD

 

Fig. 1. A schematic representation of the cognitive-sensory-motor integration required by a 
skill performance 

The research done stems out from the recognition that technology is a dominant ecology in 
our world and that nowadays a great deal of human behaviour is augmented by technology. 
Multimodal Human-Computer Interfaces aim at coordinating several intuitive input 
modalities (e.g. the user's speech and gestures) and several intuitive output modalities. 
The existing level of technology in the HCI field is very high and mature, so that 
technological constrains can be removed from the design process to shift the focus on the 
real user’s needs, as it is demonstrated by the fact that nowadays the user-centered design 
has became fundamental for devising successful everyday new products and interfaces. 
(Norman, 1986; Norman, 1988), fitting people and that really conforming their needs. 
However, until now most interaction technologies have emphasized more input channel 
(afferent channel in Figure 1 The role of HCI in the performance of a skill), rather than 
output (efferent channel); foreground tasks rather than background contexts.  
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Advances in HCI technology allows now to have better gestures, more sensing 
combinations and improve 3D frameworks, and so it is possible now to put also more 
emphasis on the output channel, e.g. recent developments of haptic interfaces and tactile 
effector technologies. This is sufficient to bring in the actual context new and better 
instruments and interfaces for doing better what you can do, and to teach you how to do 
something well: so interfaces supporting and augmenting your skills. In fact user interfaces 
to advanced augmenting technologies are the successors to simpler interfaces that have 
existed between people and their artefacts for thousands of years (M. Chignell & Takeshit, 
1999).  
The objectives is to develop new HCI technologies and devise new usages of existing ones to 
support people during the execution of complex tasks, help them to do things well or better, 
and make them more skilful in the execution of activities, overall augmenting the capability 
of human action and performance.  
We aimed to investigate the transfer of skills defined as the use of knowledge or skill 
acquired in one situation in the performance of a new, novel task, and its reproducibility by 
means of VEs and HCI technologies, using actual and new technology with a complete 
innovative approach, in order to develop and evaluating interfaces for doing better in the 
context of a specific task. 
Figure 2 draws on the scheme of Figure 1, and shows the important role that new interfaces 
will play and their features. They should possess the following functionalities: 

• Capability of interfacing with the world, in order to get a comprehension of the status 
of the world; 

• Capability of getting input from the humans through his efferent channel, in a way not 
disturbing the human from the execution of the main task (transparency); 

• Local intelligence, that is the capability of having an internal and efficient 
representation of the task flow, correlating the task flow with the status of the 
environment during the human-world interaction process, understanding and 
predicting the current human status and behaviour, formulating precise indications on 
next steps of the task flow or corrective actions to be implemented; 

• Capability of sending both information and action consequences in output towards the 
human, through his/her afferent channel, in a way that is not disturbing the human 
from the execution of the main task. 

We desire improving both input and output modalities of interfaces, and on the interplay 
between the two, with interfaces in the loop of decision and action (Flach, 1994) in strictly 
connection with human, as it is shown clearly in Figure 2. The interfaces will boost the 
capabilities of the afferent-efferent channel of humans, the exchange of information with the 
world, and the performance of undertaken actions, acting in synergy with the sensory-
motor loop. 
Interfaces will be technologically invisible at their best –not to decrease the human 
performance-, and capable of understanding the user intentions, current behaviour and 
purpose, contextualized in the task. 
In this chapter a multimodal interface capable to understand and correct in real-time 
hand/arm movements through the integration of audio-visual-tactile technologies is 
presented. Two applications were developed for this interface. In the first one, the interface 
acts like a translator of the meaning of the Indian Dance movements, in the second one the 
interface acts like a virtual teacher that transfers the knowledge of five Tai-Chi movements 
 

www.intechopen.com



 Human-Robot Interaction 

 

228 

Afferent

Channel

Efferent

Channel

High level
cognitive functions

Low level
cognitive functions

Task flow execution

HUMAN

Task flow

HCI

WORLD

HUMAN COMPUTER INTERFACE

Output 

Channel
Input 

Channel

 

Fig. 2. The role of HCI in the performance of a skill 

using feed-back stimuli to compensate the errors committed by a user during the 
performance of the gesture (Tai-Chi was chose due its movements must be performed 
precise and slow).  
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In both applications, a gesture recognition system is its fundamental component, it was 
developed using different techniques such as: k-means clustering, Probabilistic Neural 
Networks (PNN) and Finite State Machines (FSM). In order to obtain the errors and qualify 
the actual movements performed by the student respect to the movements performed by the 
master, a real-time descriptor of motion was developed.  Also, the descriptor generate the 
appropriate audio-visual-tactile feedbacks stimuli to compensate the users’ movements in 
real-time.  The experiments of this multimodal platform have confirmed that the quality of 
the movements performed by the students is improved significantly. 

2. Methodology to recognize 3D gestures using the state based approach  

For human activity or recognition of dynamic gestures, most efforts have been concentrated 
on using state-space approaches (Bobick & Wilson, 1995) to understand the human motion 
sequences. Each posture state (static gesture) is defined as a state. These states are connected 
by certain probabilities. Any motion sequence as a composition of these static poses is 
considered a walking path going through various states. Cumulative probabilities are 
associated to each path, and the maximum value is selected as the criterion for classification 
of activities. Under such a scenario, duration of motion is no longer an issue because each 
state can repeatedly visit itself. However, approaches using these methods usually need 
intrinsic nonlinear models and do not have closed-form solutions. Nonlinear modeling also 
requires searching for a global optimum in the training process and a relative complex 
computing. Meanwhile, selecting the proper number of states and dimension of the feature 
vector to avoid “underfitting” or “overfitting” remains an issue. 
State space models have been widely used to predict, estimate, and detect signals over a 
large variety of applications. One representative model is perhaps the HMM, which is a 
probabilistic technique for the study of discrete time series. HMMs have been very popular 
in speech recognition, but only recently they have been adopted for recognition of human 
motion sequences in computer vision (Yamato et al., 1992). HMMs are trained on data that 
are temporally aligned. Given a new gesture, HMM use dynamic programming to recognize 
the observation sequence (Bellman, 2003). 
The advantage of a state approach is that it doesn’t need a large set of data in order to train 
the model. Bobick (Bobick, 1997) proposed an approach that models a gesture as a sequence 
of states in a configuration space. The training gesture data is first manually segmented and 
temporally aligned. A prototype curve is used to represent the data, and is parameterized 
according to a manually chosen arc length.  Each segment of the prototype is used to define 
a fuzzy state, representing transversal through that phase of the gesture. Recognition is 
done by using dynamic programming technique to compute the average combined 
membership for a gesture. 
Learning and recognizing 3D gestures is difficult since the position of data sampled from 
the trajectory of any given gesture varies from instance to instance. There are many reasons 
for this, such as sampling frequency, tracking errors or noise, and, most notably, human 
variation in performing the gesture, both temporally and spatially. Many conventional 
gesture-modeling techniques require labor-intensive data segmentation and alignment 
work.   
The attempt of our methodology is develop a useful technique to segment and align data 
automatically, without involving exhaustive manual labor, at the same time, the 
representation used by our methodology captures the variance of gestures in spatial-
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temporal space, encapsulating only the key aspect of the gesture and discarding the intrinsic 
variability to each person’s movements. Recognition and generalization is spanned from 
very small dataset, we have asked to the expert to reproduce just five examples of each 
gesture to be recognized. 
As mentioned before, the principal problem to model a gesture using the state based 
approach is the characterization of the optimal number of states and the establishment of 
their boundaries. For each gesture, the training data is obtained concatening the data of its 
five demonstrations. To define the number of states and their coarse spatial parameters we 
have used dynamic k-means clustering on the training data of the gesture without temporal 
information (Jain et al., 1999). The temporal information from the segmented data is added 
to the states and finally the spatial information is updated. This produces the state sequence 
that represents the gesture. The analysis and recognition of this sequence is performed using 
a simple Finite State Machine (FSM), instead of use complex transitions conditions as in 
(Hong et al., 2000), the transitions depend only of the correct sequence of states for the 
gesture to be recognized and eventually of time restrictions i.e., minimum and maximum 
time permitted in a given state.  
For each gesture to be recognized, one PNN is create to evaluate which is the nearest state 
(centroid in the configuration state) to the current input vector that represents the user’s 
body position. The input layer has the same number of neurons as the feature vector 
(Section 3) and the second layer has the same quantity of hidden neurons as states have the 
gesture. The main idea is to use the states’ centroids obtained from the dynamic k-means as 
weights in its correspondent hidden neuron, in a parallel way where all the hidden neurons 
computes the similarities of the current student position and its corresponding state. In our 
architecture, each class node is connected just to one hidden neuron and the number of 
states in which the gesture is described defines the quantity of class nodes. Finally, the last 
layer, a decision network computes the class (state) with the highest summed activation.  A 
general diagram of this architecture is presented in the Figure 3. 
 

 

Fig. 3. PNN architecture used to estimate the most similar gesture’s state from the current 
user’s body position. 
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This approach allows real-time recognition while avoiding the classical disadvantages of 
this network: big computational resources (storage and time) during execution than many 
other models. An alternative for such computation is the use of RNN. In  (Inamura et al., 
2002) the authors tested the use of RNNs for motion recognition, according to their results, 
more than 500 nodes and more than 200,000 weight parameters between each node are 
needed in order to integrate the memorization process in the RNN. The RNN consist of 
motion elements neurons, symbol representation neurons and buffer neurons for treating 
time-series data. The required number of weights increases in proportion to the square of 
the number of all nodes. On the contrary in our methodology the number of parameters is 
proportional to the product of the number of hidden nodes (states in the gesture) and the 
dimension of the feature vector. To give a concrete example, a gesture typically has 10 states 
and the dimension of the feature vector is 13 (Section 3), resulting that with only 130 
parameters a gesture is modeled, given as result a high information compression ratio. 
The creation of the finite state machine is fast and simple; the transitions depend only of the 
correct sequence of states for the gesture to be recognized and eventually of time restrictions. If 
the FSM reaches its final state then the algorithm concludes that a gesture is recognized. 
 

 

Fig. 4. Multimodal Platform set up, A) 3D sound, B) Kinematics Body C) Vibrotactile device 
(SHAKE) D) Vicon System E) Virtual Environment 

3. Architecture of the multimodal interface  

The hardware architecture of our Interface is composed of five components: VICON capture 
system (VCS), a host PC (with processor of 3 Ghz Intel Core Duo and 2 gigabytes of RAM 
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memory), one video projector, a pair of wireless vibrotactile stimulators and a 5.1 sound 
system. In the host PC, four applications run in parallel: Vicon Nexus (VICON, 2008), 
Matlab Simulink® and XVR (VRMedia, 2008). Depending of the application some of the 
components are not used. 
The user has to perform a movement inside the capture system’s workspace, depending of 
the application it could be an Indian Dance movement or a Tai Chi movement. Both 
applications where built using almost the same components, and uses the same 
methodology to create the recognizer blocks (pair of PNN-FSM) described in previous 
section. The Indian Dance application is an interactive demo in which five basic movements 
of the Indian dance can be recognized and their meaning can be represented using images 
and sound, its scope is more artistic than interactive, its development was done to test our 
methodology to recognize complex gestures.  
In the Tai Chi application the objective was create a multimodal transfer skill system of Tai 
Chi movements, in this case, the gesture to be performed is known, the key idea is 
understand what far the current position of the user limbs is respect with the ideal position 
inside the reference movement. Once the distance (error) is calculated, it is possible 
modulate feedback stimuli (vision, audio and tactile) to indicate to the user the correct 
configuration of the upper limbs. It is important mention that the feature variables for 
gesture recognition and for gesture error are not the same. 
It is possible observed from the Figures 8 and 11 that the acquisition data and recognition 
system (enclosed by a blue frame) in both applications are composed for the same blocks. 
For this reason in the next sections all the common elements in both applications there will 
be described, then each application it will be presented.  

3. Modeling the upper limbs of the body  

In order to track the 3D position of the markers using the VICON it is necessary create a 
kinematics model of the user’s upper limbs. The model used is shown in Figure 5; it is 
composed of 13 markers united for hinge and balls joints.  When the user is inside of the 
workspace of tracking system, it searches the correspondence between the model and the 
tracked markers, if a match exists; VICON sends the 3D position of all markers to Simulink 
via UDP.  
The tracked positions by themselves are not useful in information for recognition due they 
are dependent of the position of the user in the capture system’s workspace. We have 
chosen another representation of these elements that are invariant to the position and 
orientation of the user, allowing having enough degrees of freedom to model the 
movements of the user without over-fitting.  
The 13 elements chosen are: 

• Right & left elbows angles 

• Right & left wrists pitch angles  

• Right & left Shoulders angles 

• The magnitude of the distance between palms 

• Three spatial vector components from the back to the right palm 

• Three spatial vector components from the back to the left palm 
In order to recognized movements from different persons, it is necessary normalize the data 
to the “pattern user”. The normalization relies in the fact that in the gestures to be 
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recognized, the ensemble of angles of the feature vector have approximately the same 
temporal behavior and their range of values are similar for different users independently of 
their body sizes due their arms can be seen as kinematics chains with the same joint 
variables with different lengths. The key idea is normalize just the components of the feature 
vector that involves distances. The normalize factor is obtained each time that a new user 
interact with the system measuring the length of his/her right arm. 
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Fig. 5. Kinematics for the upper limbs based on the marker placement on the arms and hands 

4. Cleaning and autocalibration algorithms  

The motion of the user is tracked with the eight cameras and the electronics acquisition unit 
of the VICON system at 300 Hz. Sometimes, due to the markers obstructions in the human 
motion, the data information is lost. For this reason, the “cleaning algorithm” described in 
(Qian 2004), was implemented.  
A calibration process was implemented in order to identify the actual position of the 
markers and adjust the kinematics model to the new values.  Therefore, a fast (1ms) auto 
calibration process was designed in order to obtain the initial position of the markers of a 
person placed in a military position called “stand at attention”. The algorithm checks the 
dimension of his/her arms and the position of the markers. The angles are computed and 
finally this information is compared with to the ideal values in order to compensate and 
normalize the whole system. 

5. Capturing and recognizing Indian Dance movements in real time  

In order to test our methodology to recognize gestures, we have implemented a system that 
recognizes seven basic movements (temporal gestures) of the Indian Dance.  Each one has a 
meaning; thus, the scope of our system is to discover if the user/dancer has performed a 
valid known movement in order to translate their meaning in an artistic representation 
using graphics and sounds. 
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The gestures to be recognized are: earth, fish, fire, sky, king, river and female. In Figure 6, 
different phases of each gesture are presented.  The gestures were chosen from the Indian 
Dance and their spatial-temporal complexity was useful to test our gesture recognition 
methodology. 
 

 

Fig. 6. The seven Indian Dance movements that the system recognizes 

The interaction with the user is simple and easy to learn (Figure 7). At the beginning the 
user remains in front of the principal screen in a motionless state. Once the system has 
sensed the user’s inactivity, it sends a message indicating that it is ready to capture the 
movement of the user. If the system recognizes the movement, it renders a sound and image 
corresponding to its meaning. After that, the system is again ready to capture a new 
movement.  
It is possible observe how the cameras track the user movements using the reflective 

markers that are mounted on the suit dressed by the user. The user’s avatar and the image 

that represents the meaning (a King) of the recognized gesture are displayed in the screen.  

The operation of the recognition system is as follow (it is useful see the Figure 8 to check the 

flow of the information): The eight cameras and their electronics acquisition that compose 

the VCS acquire the 3D positions of reflective markers attached to a suit that the user dresses 

on its upper limbs and send the positions to Simulink through UDP protocol.  

In Matlab Simulink’s Real-Time Windows Target, we have developed a real-time 
recognition system with a sample rate of 50 Hz. Its operation at each frame rate it’s as 
follows: the current 3D position of the markers is read from Nexus, then the data are filtered 
to avoid false inputs, then, the data are send simultaneously to XVR (to render a virtual 
avatar) and other block that converts the 3D positions of the 13 markers (vector of 39 
elements) in a normalized feature vector (values from 0 to 1). The elements of feature vector 
were described in the section 3. 
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Fig. 7. The recognition system in action.  

 

Fig. 8. Architecture of the Indian Dance Recognition System 
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Then, the normalized feature vector is sent simultaneously to a group of PNN–FSM couples 
that work in parallel. Each couple is used to recognize one gesture; the PNN is used to 
determinate which is the nearest state respect to the current body position for one particular 
gesture. Recognition is performed using a FSM, where, its state transitions depend only of 
the output of the its PNN. If the FSM arrives to its final state the gesture is recognized.  
The movements of both palms are analyzed in order to determine if the user is or is not in 
motion, this information is useful in order to interact correctly with the user. All the FSM are 
initialized when no motion of the palms is detected. 
XVR, a virtual environment development platform is used to display visual and sound 
information to the user. An avatar shows the users’ movements, a silhouette is used to 
render the sensation of performing movements along the time. The graphical application 
also indicates when is ready to recognized a new movement. If the recognition system has 
detected a valid gesture, the meaning of the gesture recognized is displayed to the user 
using an appropriate image and sound (Figure 9). 
 

 

Fig. 9 .The gesture that represents “Sky” has been recognized. The user can see the avatar, 
hear the sound of a storm and see the picture of the firmament. 

6. Development of a real-time gesture recognition, evaluation and feed-
forward correction of a multimodal Tai-Chi platform  

The learning process is one of the most important qualities of the human being. This quality 
gives us the capacity to memorize different kind of information and behaviors that help us 
to analyze and survive in our environment.  Approaches to model learning have interested 
researches since long time, resulting in such a way in a considerable number of underlying 
representative theories. 
One possible classification of learning distinguishes two major areas: Non-associative 
learning like habituation and sensitization, and the associative learning like the operant 
conditioning (reinforcement, punish and extinction), classical conditioning (Pavlov 
Experiment), the observational learning or imitation (based on the repetition of a observed 
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process)  (Byrne & Russon, 1998), play (the perfect way where a human being can practice 
and improve different situations and actions in a secure environment) (Spitzer, 1988), and 
the  multimodal learning (dual coding theory) (Viatt & Kuhn, 1997). 
Undoubtedly, the imitation process has demonstrated a natural instinct action for the 
acquisition of knowledge that follows the learning process mentioned before. One example 
of multimodal interfaces using learning by imitation in Tai-chi has been applied by the 
Carnegie Mellon University in a Tai-Chi trainer platform (Tan, 2003), demonstrating how 
through the use of technology and imitation the learning process is accelerated.  
The human being has a natural parallel multimodal communication and interaction 
perceived by our senses like vision, hearing, touch, smell and taste. For this reason, the 
concept of Human-Machine Interaction HMI is important because the capabilities of the 
human users can be extended and the process of learning through the integration of 
different senses is accelerated (Cole & Mariani, 1995; Sharma et al., 1998; Akay et al.,  1998)). 
Normally, any system that pretends to have a normal interaction must be as natural as 
possible (Hauptmann & McAvinney, 1993). However, one of the biggest problems in the 
HMI is to reach the transparency during the Human-Machine technology integration.  
In such a way, the multimodal interface should present information that answers to the 
“why, when and how” expectations of the user. For natural reasons exists a remarkable 
preference for the human to interact multimodally rather than unimodally. This preference 
is acquired depending of the degree of flexibility, expressiveness and control that the user 
feels when these multimodal platforms are performed (Oviatt, 1993).  Normally, like in real 
life, a user can obtain diverse information observing the environment. Therefore, the Virtual 
Reality environment (VR) concept should be applied in order to carry out a good Human-
Machine Interaction. Moreover, the motor learning skills of a person is improved when 
diverse visual feedback information and correction is applied (Bizzi et al., 1996).  
For instance the tactile sensation, produced on the skin, is sensitive to many qualities of 
touch. (Lieberman & Breazeal, 2007) carried out, for first time, an experiment in real time 
with a vibrotactile feedback to compensate the movements and accelerate the human motion 
learning. The results demonstrate how the tactile feedback induces a very significant change 
in the performance of the user. In the same line of research Boolmfield performed a Virtual 
Training via Vibrotactile Arrays (Boolmfield & Badler, 2008).  
Another important perception variable is the sound because this variable can extend the 
human perception in Virtual Environments. The modification of parameters like shape, tone 
and volume in the sound perceived by the human ear (Hollander & Furness, 1994), is a good 
approach in the generation of the description and feedback information in the human 
motion. 
Although a great grade of transparency and perception capabilities are transmitted in a 

multimodal platform, the intelligence of the system is, unquestionably, one of the key parts 

in the Human-Machine interaction and the transfer of a skill. Because of the integration, 

recognition and classification in real-time of diverse technologies are not easy tasks, a robust 

gesture recognition system is necessary in order to obtain a system capable to understand 

and classify what a user is doing and pretending to do.  

6.1 Tai-Chi system implementation 
This application teaches to novel students, five basic Tai Chi movements. Tai-Chi 
movements were chosen because they have to be performed slowly with high precision. 
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Fig. 10. The 5 Tai-Chi Movements 

 

Fig. 11. Architecture of the Multimodal Tai Chi Platform System 

Each movement is identified and analyzed in real time by the gesture recognition system. 
The gestures performed by the users are subdivided in n-spatial states (time-independent) 
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and evaluated step-by-step in real time by the descriptor system.  Finally, the descriptor 
executes audio-visual-tactile feedback stimuli in order to try to correct the user’s 
movements. The general architecture of the multimodal platform is shown in Figure 11. 
The data acquisition and gesture recognition blocks of this application practically are 
identical to the Indian Dance Application. The PNNs and FSMs used to recognize the 
gestures were changed to recognize the new movements. A new virtual environment was 
developed and in this application a vibrotactile feedback in addition to the visual and 
auditive was employed. 

6.1.1 Real-time descriptor process  
The comparison and qualification in real-time of the movements performed by the user is 
computed by the descriptor system. In other words, the descriptor analyzes the differences 
between the movements executed by the expert and the movement executed by the student, 
obtaining the error values and generating the feedback stimuli to correct the movement of 
the user.  
The Real-Time Descriptor is formed by a database where for each gesture n instances of 26 
variables (where n it is number of states of the gesture) with the following information are 
saved:  

• Right & left elbows angles 

• Right & left pitch and yaw wrists angles  

• Right & left pitch, yaw and roll shoulders angles 

• The magnitude of the distance between palms 

• The magnitude of the distance between elbows 

• Three spatial vector components from the back to the right palm 

• Three spatial vector components from the back to the left elbow 

• Three spatial vector components from the back to the right elbow 
The descriptor’s database is created through an offline process as follow: 
1. For each gesture it is necessary capture from a pattern movement performed by the 

expert samples of the 26 mentioned variables 
2. Each sample must be classified in its corresponding state normalizing the 13 variables 

described in the section 3 and feeding them to their corresponding PNN.   Once that all 
the samples were classified, the result it is a sequence of estates to which each sample 
belongs  

3. The sequence’s indexes of the n-1 transitions between states plus the last index that 
conform the sequence are detected 

4. With the n indexes founded, their corresponding data in the original samples are 
extracted to conform the data used to describe the gesture 

5. Change of gesture and repeat the steps 1-5 until finish all the gestures 
6. Create the descriptor database of all gestures 
When the application is running, each state or subgesture is recognized in real time by the 
gesture recognition system during the performance of the movement. Using the classic 
feedback control loop during the experiments was observed that the user feels a delay in the 
corrections. For that reason, a feed-forward strategy was selected to compensate this 
perception. In this methodology when a user arrives at one state of the gesture, the descriptor 
system carries out an interpolation process to compare the actual values with respect to the 
values in the descriptor for the following state, creating a feed-forward loop which estimates in 
advance the next correction values of the movement. The error is computed by: 
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 [ ]1error n n nP U Fθ += − ∗  (1) 

Where θerror is the difference between the pattern and the user, P is the pattern value 
obtained from the descriptor, U is the user value, Fu is the normalize factor and n is the 
actual state. 
 

 

Fig. 12. Storyboard for the Multimodal Interface for Tai Chi Training 
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6.1.2 Virtual reality platform  
The virtual environment platform provides the visual information to the user was 
programmed in XVR.  There are 3 different sequences involved in this scenery. The first one 
is the initial screen that shows 5 avatars executing different Tai Chi movements. When a 
user tries to imitate one movement, the system recognizes the movement through the 
gesture recognition algorithm and passes the control to the second stage called “training 
session”. In this part, the system visualizes 2 avatars, one represents the master and the 
other one is the user. Because learning strategy is based on the imitation process, the master 
performs the movement one step forward to the user. The teacher avatar remains in the state 
n+1 until the user has reached or performed the actual state n. 
With this strategy the master gives the future movement to the user and the user tries to 
reach him. Moreover, the graphics displays a virtual energy line between the hands of the 
user. The intensity of this line is changing proportionally depending on the error produced 
by the distance between the hands of the student. When a certain number of repetitions 
have been performed, the system finishes the training stage and displays a replay session 
that shows all the movements performed by the student and the statistical information of 
the movement’s performance. Figure 12 shows the storyboard for the interaction with the 
user and Figure 13 (A)(B) shows the virtual Tai-Chi environment. 
 

 

Fig. 13. VR environment, A) Initial Screen, 5 avatars performing Tai-Chi movements, B) 
Training session, two avatars, one is the master and second is the user. C) Distance of the 
Hands, D) Right Hand Position. 

6.1.3 Vibrotactile feedback system  
The SHAKE device was used to obtain wireless feedback vibrotactile stimulation. This 
device contains a small motor that produces vibrations at different frequencies.  In this 
process, the descriptor obtains the information of the distance between the hands, after this, 
the data is compared with the pattern and finally sends a proportional value of the error. 
The SHAKE varies proportionally the intensity of the vibration according to error value 
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produced by the descriptor (1 Hz – 500 Hz). This constraint feedback is easy to understand 
for the users when the arms have reached a bad position and need to be corrected.  Figure 13 
(C) shows the ideal distance between the hands (green), the distance between the hands 
performed by the user (blue) and the feed-back correction (red). 

6.1.4 Audio feedback system 
The position of the arms in the X-Y plane is analyzed by the descriptor and the difference in 
position between the pattern and the actual movement in each state of the movement is 
computed. A commercial Creative SBS 5.1 audio system was used to render the sound 
through 5 speakers (2 Left, 2 Right, 1 Frontal) and 1 Subwoofer. In this platform was selected 
a background soft-repetitive sound with a certain level of volume. The sound strategy 
performs two major actions (volume and pitch) when the position of the hands exceeds the 
position of the pattern in one or both axes. The first one increases, proportionally to the 
error, the volume of the speakers in the corresponding axis-side (Left-Center-Right) where is 
found the deviation and decreases the volume proportionally in the rest of the speakers. The 
second strategy varies proportionally the pitch of the sound (100-10KHz) in the 
corresponding axis-side where was found the deviation.  Finally, the user through the pitch 
and the volume can obtain information which indicates where is located the error and its 
intensity in the space.  

7. Experimental results  

The experiments were performed capturing the movements of 5 Tai-Chi gestures (Figure 10) 
from 5 different subjects. The tests were dived in 5 sections where the users performed 10 
repetitions of the each one of the 5 movements performed. In the first section was avoid the 
use of technology and the users performs the movement in a traditional way, only observing 
a video of a professor performing one simple tai-chi movement. The total average error 
TAVG is calculated in the following way: 

   
(2)

 

Where Ns is the total number of subjects, n is the total number of states in the gesture and θ 
is the error between the teacher movement and the student. 
Figure 14 (A) shows the ideal movements (Master Movements) of the gesture number 1 and 
(B) represents the TAVG of the gesture 1 executed by the 5 subjects without feedback. The 
TAVG value the 5 subjects without feedback was around 34.79% respect to the ideal 
movement. In the second stage of the experiments, the Virtual Reality Environment was 
activated. The TAVG value for the average of the 5 subjects in the visual feedback system 
presented in Figure 14(C) was around 25.31%. In the third section the Visual-Tactile system 
was activated and the TAVG value was around 15.49% respect to the ideal gesture.  In the 
next stage of the experiments, the visual- 3D audio system was performed and the TAVG 
value for the 5 subjects in the audio-visual feedback system was around 18.42% respect to 
the ideal gesture. The final stage consists in the integration of the audio, vibrotactile and 
visual systems. The total mean error value for the average of the 5 subjects in the audio-
visual-tactile feedback system was around 13.89% respect to the ideal gesture. Figure 14 (D) 
shows the results using the whole integration of the technologies.  
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Fig. 14. Variables of Gesture 1, A) Pattern Movement,  B) Movement without feedback, C) 
Movement with Visual feedback and D) Signals with Audio-Visual-Tactile feedback. 

Figure 15 presents an interesting graph where the results of the four experiments are 
indicated. In one hand, as it was expected, the visual feedback presented the major error. In 
the other hand the integration of audio-visual-vibrotactile feedback has produced a 
significant reduction of the error of the users. The results of the experiments show that 
although the process of learning by imitation is really important, there is a remarkable 
improvement when the users perform the movements using the combination of diverse 
multimodal feedbacks systems.  

8. Conclusion 

We have built an intelligent multimodal interface to capture, understand and correct in real 
time a complex hand/arm gestures performed inside its workspace. The interface is formed 
by a commercial vision tracking system, a commercial PC and feedback devices: 3D sound 
system, a cave like VE and a pair of wireless vibrotactile devices.  The interface can capture 
the upper part limbs kinematics of the user independently of the user's size and high. The 
interface recognizes complex gestures due a novel recognition methodology based on 
several machine-learning techniques such as: dynamic k-means, probabilistic neural 
networks and finite state machines. This methodology is the main contribution of this 
research Human Hand Computer Interaction research area, its working principle is simple: 
a gesture is split in several states (a state is an ensemble of variables that define an static 
position or configuration), the key is obtain the optimal number of states that define 
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Fig. 15. Average Errors  

correctly a gesture and develop an algorithm that recognize which is the most similar state 
to the current position of the user limbs; then the gesture recognition is simple due that just 
it is necessary check the sequence of states that the user generated with his/her movement, 
if the sequence is correct and arrives to the gesture's last state without error, the gesture is 
recognized. 
The methodology proposed showed the effectiveness of dynamic k-means to obtain the 
optimal number and spatial position of each state. To calculate the boundaries of each state 
instead to use complex sequential algorithms such as Hidden Markov Models or recurrent 
neural networks, we have employed Probabilistic Neural Networks. For each gesture a PNN 
was created using as a hidden neurons the states founded by the dynamic k-means 
algorithm, this way a gesture can be modeled with few parameters enabling compress the 
information used to describe the gesture.  
Furthermore the PNN is used not only to model the gesture but also to recognize it, 
avoiding use two algorithms.  For example when a recognizer is developed with HMM its 
necessary at least executed two algorithms, the first one defines the parameters of the HMM 
given a dataset of sequences using the  Baum-Welch algorithm and then, online  the forwad-
backward algorithm computes the probability of a particular output sequence and the 
probabilities of the hidden state values given that output sequence. This approach it is 
neither intuitive nor easy to implement when the sequence of data is multidimensional, to 
solve this problem, researchers that desire recognize complex gestures use dimension 
reductions algorithms (such as principal components analysis, independent components 
analysis or linear discriminant analysis) or transform the time dependent information to its 
frequential representation destroying their natural representation (positions, angles, 
distances, etc). Our methodology shown its effectiveness to recognize complex gesture using 
PNN with a feature vector of 16 dimensions without reduce its dimensionality.  
The comparison and qualification in real-time of the movements performed by the user is 
computed by the descriptor system. In other words, the descriptor analyzes the differences 
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between the movements executed by the expert and the movements executed by the 
student, obtaining the error values and generating the feedback stimuli to correct the 
movements of the student.  The descriptor can analyze step by step the movement of the 
user and creates a comparison between the movements by the master and user. This 
descriptor can compute the comparison up to 26 variables (angles, positions, distances, etc). 
For the Tai-Chi skill transfer system, only four variables were used which represents X-Y 
deviation of each hand with respect to the center of the body, these variables were used to 
generate spatial sound, vibrotactile and visual feedback. The study shown that with the use 
of this interface, the Tai Chi students improve to its capability to imitate their movements. 
A lot of work must be done, first is still not clear the contribution of each feedback stimuli to 
correct the movements, seems that the visual stimuli (Master avatar) dominate to the 
auditive and vibrotactile feedbacks. A separate studies in which auditive and vibrotactile 
feeback will be the only stimulus must be done in order to understand their contributions to 
create the multimodal feeback. For the auditive study, a 3D spatial sound system must be 
developed putting emphasis in the Z position. For the vibrotactile study, a upper limbs suit 
with tactors distributed along the arm/hands must be developed, the position of the tactors 
must be studied through a psychophysical tests. 
Once the multimodal platform has demonstrated the feasibility to perform the experiments 
related to the transfer of a skill in real-time, the next step will be focused in the 
implementation of a skill methodology which consists, in a brief description, into acquire 
the data from different experts, analyze their styles and the descriptions of the most relevant 
data performed in the movement and, through this information, select a certain lessons and 
exercises which can help the user to improve his/her movements. Finally it will be 
monitored these strategies in order to measure the progress of the user and evaluate the 
training. These information and strategies will help us to understand in detail the final 
effects and repercussions that produce each multimodal variable in the process of learning.  

9. References 

Akay, M., Marsic, I., & Medl, A. (1998). A System for Medical Consultation and Education 
Using Multimodal Human/Machine Communication. IEEE Transactions on 
information technology in Biomedicine , 2. 

Annelise Mark Pejtersen, J. R. (1997). Ecological Information Systems and Support of 
Learning: Coupling Work Domain Information to user Characteristics. Handbook of 
Human-Computer Interaction. North/Holland. 

Bellman, R. (2003). Dynamic Programming. Princeton University Press. 
Bizzi, E., Mussa-Ivaldi, F., & Shadmehr, R. (1996). Patent n. 5,554,033. United States of 

America. 
Bloomfield, A., & Badler, N. (2008). Virtual Training via vibrotactile arrays. Teleoperator and 

Virtual Environments , 17. 
Bobick, A. F., & Wilson, A. D. (1995). A state-based technique for the summarization and 

recognition of gesture. 5th International Conference on Computer Vision, (p. 382-388). 
Bobick, A., & Davis, J. (1996). Real-Time Recognition of Activity Using Temporal Templates. 

Proc. Int’l Conf. Automatic Face and Gesture Recognition. Killington, Vt. 
Byrne, R., & Russon, A. (1998). Learning by imitation: a Hierarchical Approach. Behavioral 

and Brain Sciences , 21, 667-721. 
Cole, E., & Mariani, J. (1996). Multimodality. Survey of the State of the Art of Human 

Language Technolgy. 

www.intechopen.com



 Human-Robot Interaction 

 

246 

Flach, J. M. (1994). Beyond the servomechanism: Implications of closed-loop, adaptive 
couplings for modeling humna-machine systems. Symposium on Human Interaction 
with Complex Systems. North Carolina A&T State University. 

Gopher, D. (2004). Control processes in the formation of task units. 28th International 
Congress of Psychology. Beijing, China. 

Hauptmann, A., & McAvinney, P. (1993). Gesture with Speech for Graphics Manipulation. 
Man-Machines Studies , 38. 

Hollander, A., & Furness, T. A. (1994). Perception of Virtual Auditory Shapes. Proceedings of 
the International Conference on Auditory Displays.  

Hong, P., Turk, M., & Huang, T. S. (2000). Gesture Modeling and Recognitition Using Finite 
State Machines. Proceedings of the Fourth IEEE International Conference on Automatic 
Face and Gesture Recognition. 

Inamura, T., Nakamura, Y., & Shimozaki, M. (2002). Associative Computational Model of 
Mirror Neurons that connects mising link betwwen behavior and symbols. 
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. . 
Lausanne, Switzerland. 

Jain, A., Murty, M. N., & Flynn, P. (1999). Data Clustering: A Review. ACM Computing 
Surveys , 31 (3). 

Lieberman, J., & Breazeal, C. (2007). Development of a wearable Vibrotactile FeedBack Suit 
for Accelerated Human Motor Learning. IEEE International Conference on Robotics 
and Automation.  

McCullough, M. (1999). Abstracting Craft. MIT Press. 
Norman, D. (1986). User-centered systems design. Hillsdale. 
Norman, D. (1988). The design of everyday things. New York: Basic Books. 
M. Chignell, P., & Takeshit, H. (1999). Human-Computer Interaction: The psychology of 

augmented human behavior. In P. Hancock (A cura di), Human performance and 
Ergonomics. Academic Press. 

Oviatt, S. (1993). User Centered Modeling and Evaluation of Multimodal Interfaces. 
Proceedings of the IEEE , 91. 

Qian, G. (2004). A gesture-Driven Multimodal Interactive Dance System. IEEE International 
Conference on Multimedia and Expo.  

Sharma, R., Huang, T., & Pavlovic, V. (1998). A Multimodal Framework for Interacting With 
Virtual Environments. In C. Ntuen, & E. Park (A cura di), Human Interaction With 
Complex Systems (p. 53-71). Kluwer Academic Publishers. 

Spitzer, M. (1998). The mind within the net: models of learning, thinking and acting. The MIT 
press. 

Tan Chau, P. (2003). Training for physical Tasks in Virtual Environments: Tai Chi. 
Proceedings of the IEEE Virtual Reality. 

Viatt, S., & Kuhn, K. (1997). Integration and synchronization of input modes during 
multimodal human-computer interaction. Proc. Conf. Human Factors in Computing 
Systems CHI.  

VICON. (2008). Seen at December 29, 2008 from http://www.vicon.com 
VRMedia. (2008). Seen at December 29, 2008 from EXtremeVR: virtual reality on the web: 

http://www.vrmedia.com 
Yamato, J., Ohya, J., & Ishii, K. (1992). Recognizing human action in time-sequential images 

using Hidden Markov Model. IEEE Conference CPVPR, (p. 379-385). Champaign, IL. 

www.intechopen.com



Human-Robot Interaction
Edited by Daisuke Chugo

ISBN 978-953-307-051-3
Hard cover, 288 pages
Publisher InTech
Published online 01, February, 2010
Published in print edition February, 2010

InTech Europe
University Campus STeP Ri 
Slavka Krautzeka 83/A 
51000 Rijeka, Croatia 
Phone: +385 (51) 770 447 
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai 
No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 
Fax: +86-21-62489821

Human-robot interaction (HRI) is the study of interactions between people (users) and robots. HRI is
multidisciplinary with contributions from the fields of human-computer interaction, artificial intelligence, robotics,
speech recognition, and social sciences (psychology, cognitive science, anthropology, and human factors).
There has been a great deal of work done in the area of human-robot interaction to understand how a human
interacts with a computer. However, there has been very little work done in understanding how people interact
with robots. For robots becoming our friends, these studies will be required more and more.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Otniel Portillo-Rodriguez, Oscar O. Sandoval-Gonzalez, Carlo Avizzano, Emanuele Ruffaldi and Massimo
Bergamasco (2010). Capturing and Training Motor Skills, Human-Robot Interaction, Daisuke Chugo (Ed.),
ISBN: 978-953-307-051-3, InTech, Available from: http://www.intechopen.com/books/human-robot-
interaction/capturing-and-training-motor-skills


