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Abstract— This paper presents a novel use of sensor sytem for
human gait recognition evolution to be employed in virtual en-
vironments exploration. The system allows free human motion
inside a virtual environment employing human gait recognition.
Experimental sessions have been organized in order to acquire
acceleration data related to walking and running of several
subjects. We present an algorithm that recognizes a person
gait in real-time. The recognized motion can be used to enhance
the presence of the user in the virtual environment. A simple
scenario has been developed to assess the system functionality.
The experiments carried out show that our system is suitable
to classify human motion, count steps and, moreover, can be
used both in virtual and augmented reality (VR) environments
for an improved interaction.

I. INTRODUCTION

Fig. 1. Virtual Reality Emvironment.

Virtual Reality (VR) is one of the most futuristic, pop-
ular, and multidisciplinary areas of scientific investigation.
Recently VR has started to influence society and strongly
change the lifestyle of many people, especially the youngest
generations, in part because of the entertainment and elec-
tronic gaming. The most common applications of VR range
from entertainment and medical purposes, especially in re-
habilitation, to the fields of astronomy, design, defense, cin-
ematography, architecture, education, etc. Extreme cases are
for example the virtual hair salons [6] and virtual museums.
The advances in this field are evident, as we easily experience
when we use a program as Google Earth. Despite these
advances in the field, VR still needs more research work
in order to make people confident in using the technology.
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The trend in VR is to simulate environments which seem
increasingly real to humans. Therefore, a virtual environment
simulation should be created with more sophisticated systems
in order to interact with humans in natural ways. These
systems should be more robust and have special emphasis
on human senses, in order to provide users with a sensation
of full virtual immersion. In this study, we focus on a system
for motion recognition to easily augment interaction in VR
environments.

Motion capturing is the first step of any motion recognition
system. We distinguish between marker and markerless based
approaches. The former rely generally on tracking optical
markers attached to a person [10], [11], while the latter
track features appearing naturally in videos [3], [8], [9].
Optical motion capture systems have the advantage of being
accurate but they can be quite expensive and require users
to wear markers in proper patterns. As a result, the system
must be set up appropriately in advance. In this paper, we
take advantage of the newest accessible electronics devices
on the market, accelerometers, to develop an alternative
approach for capturing human motion. Accelerometers are
easy to handle and they do not need previous setup. Using
this type of sensor, we propose a system that detects the
speeding up or slowing down of a person during a motion
and identify whether he or she is walking, running or re-
maining stationary. Our approach employs a real-time sensor
system that could be used both in virtual and augmented
reality environments. Consequently, the virtual environment
changes simultaneously according to the recognized motion
giving users the sensation that they are moving in a real
environment.

The paper is organized as follows: Section 2 give some
related works. Section 3 give a brief introduction of virtual
environment exploration. Section 4 details the algorithm
employed to recognize running and walking gaits in real
time. The experimental results are shown in Section 5.
Section 6 concludes the paper.

II. RELATED WORK

Using accelerometers attached to the person body is a
method that has been proven effective for human motion
recognition. Ling Bao [17] proposed a system for activities
recognition using five accelerometers worn on different parts
of the body. Features such as energy, frequency-domain
entropy, and correlation were computed on the acceleration
data, over 6.71 s sliding windows. Several classification
methods were then applied and their performance tested
on 20 everyday tasks activities of daily living (walking,
running, bicycling, reading, stretching, etc.). N. Ravi et
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al. [20] developed a system to recognize activities using
a single accelerometer worn near the pelvic region. The
authors computed features over a sliding window of 5.12
s which was sufficient to capture cycles in the different
activities considered. As for the classification, they evaluated
the performance of the base-level classifiers as well as the
meta-level-classifiers such as boosting [23]. T. Huynh and B.
Schiele [24] studied the effect of computing several features
over different window lengths (0.25, 0.5, 1, 2 and 4 sec) on
the recognition rates of common activities using acceleration
data. The authors concluded that a better recognition occurs
when selecting different window lengths for different activi-
ties. For example, the 1 second window has been chosen for
the activities ’jogging’ and ’walking’; the 2 and 4 second
windows are more adapted for ’skipping’ and ’hopping’,
and the 0.25 and 0.5 second lead to a better recognition
rate for the activity ’standing’. Takeuchi et al. [21] inves-
tigates, between the frecuency and the time domaine, the
best features parameters for human action recognition. The
authors employ the acceleration information in three axes and
their derivatives as the baseline method in the time domain.
They use Mel-Frequency Cepstral Coefficients as feature
parameters in the frequency domain. They found that the best
recognition rates are obtained when the features of the axis
that contained most of gravitational acceleration information
were included.

Our method perform both time and frecuency domain
analysis on the most gravitational acceleration information
in order to recognize a person gait in real-time. The orig-
inality of the approach consists in its adaptation to real
time Virtual Reality applications, where even a small delay
negatively impacts the interaction. This is ensured for the
careful analysis of the behavior of the human motion and the
acceleration during walking, running and even of stationary
persons. From this motion analysis we observed considerable
differences in acceleration in both gaits and in the period
between the acceleration peaks during walking and running.
To verify these differences a statistical analysis of 20 subjects
was done. The results from this analysis strengthen our
decision to use thresholds from the maximum and minimum
acceleration changes and period between acceleration peaks.
As a strategy to separate walking from running gaits and
identify the user moving style during VE interaction.

Knowing the acceleration behavior during walking and
running, the differences between them come clear to us,
which is not for a sensor system, we must enable it to
separate these. For human with a simple gaze in the user
motion or computed acceleration may know the user gait.
The acceleration from the person thigs give information such
as: when a feet is in the ground, is behind, in front, etc.
It is because during a single human step each movement
and acceleration have them specific features. The motion
and consequently the acceleration are similar in humans.
Therefore, the main strategy in our system is based on these
features. Here we proposed some thresholds in acceleration
changes such: the maximum and minimum acceleration and
the period between acceleration peaks that are different

during walking or running. These thresholds were analyzed
carefully in order to develop an strategical system that does
not request much computational power that could influence
in delaying VR response during human interaction. There-
fore, the thresholds obtained from the acceleration analysis
from the 20 subjects were specified in a state machine. Which
controls the acceleration features changes and identifying the
gaits in which the user is moving. Send this information in
real time to XVR, that would be generate a VR environment,
which the user perceives and interact according to his or her
motion.

III. VIRTUAL ENVIRONMENT EXPLORATION

Movement through virtual spaces is one of the simplest
and most important way of interaction [Hiroo Iwata, 1999;
Doug A. Bowman, 1997]. Previous studies have demon-
strated that real walking in virtual environments is better
than virtual walking; it is more natural and produces a higher
sense of presence than other movement methods [15], [16].
Inmersive virtual enviroments (IVE) has several applications,
ranging from architectural design to situational awareness
training. The main problem in VE research is the continuing
search for most naturals ways of human interaction (full
immersion). [Hiroo Iwata, 1999; Doug A. Bowman, 1997]
mentioned that locomotion through virtual spaces is the most
primitive and important special case. The following three are
the most commonly used alternative locomotion methods:
flying, via use of a wand; normal walking, with a uniform
gain applied to the output of the tracker; and normal walking
without gain, but with the location and orientation of the
larger virtual environment periodically adjusted relative to
position of the participant in the real environment [22].

The actions and perception of the user should be in
sequence with the VE, therefore even a small delay in
response between the user and the VE could influence the
quality of the interaction considerably.

In this study we present a novel approach for navigation in
3D virtual environments, a sensor system that can be used
in augmented VR by taking advantage of new and easily
accessible technologies in the market, such is the wiimote
control (Figure 2). The idea is measure the acceleration of
a person that moves in the VR environment and use it to
identify its motion (walking or running) and thus allowing
the user to control his speed within the environment.

Our system can be used to detect both walking/running
in place and real walking and running, as the system has
been tested in both real and virtual environments. The
sensor system presented here can also be used for different
purposed, for which the exploration of 3D VR enviroments
is needed. In order to test the effectiveness of our sensor
sytem, we designed a 3D environment, in which the user
could get the sensation of moving in a park. To create this
illusion, we used objects such as virtual trees, a road, blue
sky and mountains. (Fig. 1).
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Fig. 2. Wiimote controller device with the reference axes.

IV. REAL-TIME HUMAN GAIT RECOGNITION

A. Humans Gait Acceleration Signal

This paragraph details how acceleration varies during
walking and running. The acceleration behavior during hu-
man motion is crucial in selecting relevant features for gait
recognition. When we walk or run, our movement is cyclic
and our legs are constantly transitioning between two phases:
stance and swing [10]. The stance phase begins when the heel
initially touches the ground in front of us. The corresponding
foot is then completely on the floor and the person’s weight
comes over it. The stance phase ends when the knee is almost
straight and the other heel behind starts to rise till the toes
tips barely touch the ground. The swing phase thus starts
when the toes go off the ground from behind the person.
The leg moves then forward in the air until its corresponding
heel touches again the ground. This is the end of the swing
phase [12]. Figures 3 and 4 show a typical example of the
z-acceleration signals of a user walking and running. These
signals are fairly repeatable over periods. Previous studies on
human walking has shown that muscles act only to establish
an initial position and velocity of the feet at the beginning
half of the swing phase, and then remain inactive throughout
the other half [1]. Thus, the swing phase is characterized by
a down-up course of the acceleration, ending with the heel-
strike. The latter is usually clearly visible as a negative peak.
The acceleration behavior during swing phase is represented
by the letters A-B-C and the stance phase by the letters C-D-
E. Figures 3 and 4. In these figures a peak is marked with a
circle read, it is visible that in the swing phase during running
the peak is higher than during walking. On the other hand,
the second half of the stance phase, when the heel is off
the ground and toe still on the floor, is characterized by an
increase of the equivalent acceleration. Thus, in the z-axis,
there are a smooth positive peak in stance phase and some
positive peaks near heel-off event [13]. For the running gait

the acceleration is bigger in this phase.

Fig. 3. Vertical acceleration of the walking gait over time.

Fig. 4. Vertical acceleration of the running gait over time.

B. Feature Extraction

This paragraph details the experiment conducted in order
to extract relevant features from the acceleration signal
permitting to differentiate between walking and running
gaits. We have asked 20 healthy subjects, aging between
23 and 35 years, to walk and run in a straight line at their
corresponding natural pace (not too slow, nor too fast). The
acceleration data acquired from the wiimote was then sent
to a PC via Bluetooth and analyzed in a Matlab/Simulink
environment. Not noise filtering was carried out in the data,
since we observed that is not need and the use of a filter
could influence the delay of the recognition system.

This evaluation shows that the acceleration varies from
one person to another according to several parameters, such
as legs length (from the pelvis to the end of the heels), thigh
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Fig. 5. Walking style: the first three columns represent the person’s height,
length of the legs and length of the thigh. The last three columns shows
the average minimum and maximum acceleration as well as the average
acceleration period for each person.

length (form the pelvis to the end of the knee joint) and
person’s height. Figures (5, 6) show these parameters as well
as the corresponding acceleration minimum and maximum
values for several persons while running or walking. The
ideal situation is that the user walks and runs in a regular
pattern which would lead to equal gait cycles. However,
during a natural walk or run, a person gait cycles may be of
different lengths. Thus, the values presented in figures (5, 6)
correspond to the average ones computed for each person. In
a second time, the average values for the 20 subjects were
computed: Fig. (7) illustrates the minimum and maximum
acceleration values, as well as the standard deviations for
the two gaits. It is clear that the acceleration values are
not enough to distinguish between the gaits. Thus, another
criterion is needed. We have shown previously that the z-
acceleration signal of each gait over time is fairly periodic
(Fig. 3, 4). The corresponding cycles are detected from this
signal by: (1) determining the swing peaks and (2) measuring
time between two successive peaks. For locating acceleration
swing peaks, and since the acceleration values are similar
for running/walking, the same threshold of 0.60m/s2 is
used for the two gaits. This threshold is derived empirically
after studying the acceleration changes over time in several
subjects. The threshold is shown in (Fig. 3) as a red dashed
line for the walking style and a blue dashed line for the
running gait in (Fig. 4). The time period in (Fig. 5, 6) is the
average period computed for each person. Figure (8) shows
the average period and its corresponding standard deviation

Fig. 6. Running style: the first three columns represent the person’s height,
length of the legs and length of the thigh. The last three columns shows
the average minimum and maximum acceleration as well a s the average
acceleration period for each person.

Fig. 7. Maximum and minimum accelerations of walking and running
gaits. The bars, stand for the acceleration average, the lines represent the
standard deviation.
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for the 20 persons. This shows that one can easily distinguish
between the periods of two styles. Thus this criterion can be
used to recognize running/walking behavior.

Fig. 8. Mean and standard deviation of the period between acceleration
peaks (walking and running gaits).

C. Gait Recognition Algorithm

To identify the acceleration peaks, as well as the transition
from one gait to another, we used a state machine. Using
an acceleration threshold, it was able to perform automatic
recognition of the acceleration peaks. The distance between
the peaks are then used to define the step period, which is
used for the recognition of the gait in a moving person.

1) Selection of periods: A statistical analysis aids us in
the choice of thresholds for the time intervals. The minimum
and maximum step period for the users were 0.6300s and
1.2600s during walking. On the other hand, the intrasubject
variability was low. For our state machine we used period
thresholds of walking (t) should be (0.5560s, 1.2854s ),
the former was estimated from the average between the
minimum period of walking and the maximum period from
running stile, and the latter is the mean period from the
20 subjects plus three times the standard deviation, these
threshold represents an interval well covering the measured
variability of all subjects. Opposite, during running the
minimum and maximum step period for the users were
0.1200s and 0.48s. For our state machine we used period
thresholds of running (t) should be ( 0.1200s, 0.5550s ), the
former is the minimum period during running and the latter
is average between the minimum period of walking and the

Fig. 9. State flow algorithm of the main solution, Pstart represents
the beginning of acceleration peak and Pend represents the end of the
acceleration peak see figures 3 and 4.

maximum period from running stile that is also close to
the mean period of running plus three times the standard
deviation that is 0.5037s. The statistics is shown in Figure
8. Note that there is a gap between the periods of running
and walking. This is needed to account for the fact that we
often get artifacts mid-step from the shock as the foot hits
the ground.

2) Initial recognition: In order to avoid delay at the
beginning of the gait recognition process, before the second
step and consequential time interval has been measured, we
decided to give the system the option to recognize gaits
using only the maximum acceleration for the first step.
Even if this, as discussed in paragraph 3.2, doesn’t result in
reliable classification in a moving person, it is considerable
more robust in classification of the first step. By using
this additional method we allow a more responsive virtual
environment. After the second step has been completed, the
system switches to the time-based recognition process.

3) Acceleration thresholds: The acceleration thresholds
for the walking gait were set to (0.28m/s2,0.8493m/s2 ),
while the threshold for the running gait is (0.8493m/s2 ≤
acceleration), both of these threshold would be used for the
steps counting. A single step is consider when it finish a
cycle that it start with the feet touch the ground and end
in the same position. The threshold separating walking and
stationary may be adjusted depending on the expected sta-
tionary movement in the virtual environment. The threshold
between walking and running is placed an equal number of
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standard deviations from each mean, in order to maximize the
classification ability. They are set apart by 0.7750 standard
deviations, theoretically resulting in a successful recognition
of about 80 percent of all steps. The statistical analysis results
for maximum and minimum acceleration can be found in
Figure 7. The state flow algorithm of the solution is shown
in Figure 9. All calculations used a time resolution of 10 ms.

D. Model of the solution

The model of the solution was developed in a Simulink
environment it is shown in the figure 10. The wiimote control
function is represented by the two blue squares placed in the
left side of the figure. In order to enable the PC to handle
more than one wiimote control, the Wiiuse library was used
[4]. The acceleration data information is sent in this process
to the state flow, represented by the grey block, which
handles the classification of the human motion explained
before(Fig. 9). Once the gait is identified it sends the infor-
mation to the virtual environment by a UDP protocol. The
virtual reality process is represented by a smaller light blue
square and the first output is the one to send the style. The
second scope display the moving styles (1: stop, 2: walking,
3: run) and the last scope display the number of steps of
the user during interaction. We added this last procedure to
count the user steps as an extra of our system. The Simulink
setup provides a flexible framework for handling the recog-
nition in real-time. This let the programer to specifcate the
simulation time acording to the requestment of the system;
it is reprecented in the schema by the green square. The
models used in the VR environment were designed in 3D
Studio Max. The virtual reality application was developed
in XVR, which provides extensive libraries for controlling
virtual reality devices [14]. Therefore, the velocity of the
moving environment mirrors the gait of the user (walking,
running or remaining stationary).

E. System Setup

Two commercially wiimote controllers were used to reg-
ister the acceleration signals [2]. These devices can sense
both rotational and translational accelerations by the triple-
axis accelerometer (ADXL330) embedded in the controller:
backward-forward (x-axis), lateral (y-axis), and vertical (z-
axis) (Fig. 2). Thus, data corresponding to the z axis reflect
the acceleration provided by the rising and lowering of the
body. The x axis’s data register the sideways action of
the body. Finally, the y axis data register the acceleration
when the user moves sideways. The accelerometer has a
measurement range of ±3g (where g is the gravitational
acceleration) and outputs analog voltage signals proportional
to the acceleration. The portable devices were attached to the

Fig. 10. Simulink model of the solution. The first output is the one that send
the style to XVR, the second scope display the styles (1: stop, 2: walking,
3: run) and the last scope display the number of steps of the user during
interaction.

user’s legs: one to each of the right and left thighs (Figure
11), close to the knee joint, which performs most of the
work during walking and running gaits [5], moreover, the
acceleration of the thigh is the most useful single sensor
location for discriminating activities [17]. These devices
communicate with the computer via a Bluetooth adapter,
which provides a suitable operating range. Depending on the
device class, it covers from 1 to 100 meters from the receiver.
Four stereoscopic video projectors were used to project the
images of the 3D Virtual environment. The projectors are
connected to the PC by a VICON MX ULTRANET system
which provides power, synchronization and comunication
with each projector through a single cable connector [7].
The two images use different polarizations of the light and
are projected on the screen. The VR glasses filters the
polarizatio, so that each eye sees only one of the projections.
The difference between the two images gives the user an
illusion of depth in the image.

V. EXPERIMENTAL RESULTS

In order to test our system, we validated the state machine
on a separate group 8 healthy subjects, aging between 23 and
35 years, which were not used in development of the state
machine.

1) Motion in real environment: We test the functionality
of the system in real environment, the experiments were
performed outside of the Perceptual Robots Laboratory in
the sidewalk in which we have asked the subjects to walk
and run in a straight line at their corresponding natural pace
(not too slow, not too fast), without stopping. We reliesed
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Fig. 11. The full system setup

from some experiments using the walking machine that the
used velocities for each gait were 4 and 8 Km/h approx. and
the travel distance was 20 meters approx. In order to test
the stationary gait recognition grade we asked the subjects
to walk and a run for a small period and after stop for 10
seconds. To verify the system by ourself we performed real
moving experiments in which the subjects moved around
freely using different styles while we observe the recognition
in the computer.

2) Motion in VE: In order to proved the system in VE
we performed an experiment in where we have asked to the
subjects to walking and running-in-place it mean walking
or running without real gain but the sentation of moving
should be given by the screen, wich the user may looks
while is moving. For this experiments we used the previous
mentioned VE application. Performed these experiments we
approached the referents of perception and action during
motion in an VE exploration.

3) Results: To measure the confusion matrix, we com-
pared the output each time the state machine entered one of
the three recognition states (stop, walk run in the diagram)
with the actual gait being performed in the experiment. In
the tables we present an average of the recognition from
the two wiimotes placed in the user thighs. The experiments
to identify gait in natural environment shows us that the
recognition in the running style the model give us some how
good results. There was some confusion of the walking gait
as well with the stopping gait, but overall performance was
well above 90 %. Opposite in the moving in place using VE
the more confuse was with walking and stopping an 11%, we
have observed that some of the participants here sometimes
were relaxing the way of moving the legs during walking,

TABLE I
CONFUSION TABLE FOR GAIT RECOGNITION IN NORMAL ENVIRONMENT.

Style Stop Walk Run
Identified [%] [%] [%]
Stop 100 0 0
Walk 5.68 94.32 0
Run 0 1.19 98.81

TABLE II
CONFUSE TABLE FOR GAIT RECOGNITION IN MOVING IN PLACE USING

VE.

Style Stop Walk Run
Identified [%] [%] [%]
Stop 100 0 0
Walk 11.5 88.5 0
Run 3.3 0.45 96.25

therefore the system confused this style with stopping. For
the option of counting steps we just verified with the number
of steps of the user with the ones specified in the display it
was accurate as is in relation with the average of recognition
system, since this option depends also of the acceleration.
The experiments show that, our algorithm is able to detect
the changes in acceleration and identify whether a person is
in motion or stationary as well as classify the motion as either
walking or running in both natural and VE environments.

The experiments carried out show that, given the acceler-
ation data information over time, it is possible to identify in
natual moving whether a person is walking with an accuracy
of 94%, running at 98%, and stationary person at 100%. For
the recognition un moving in place in VE the accuracy for
walkin was 88%, we belive that this recognition could be
impruve just to explaining the user how to work and trying
to avoid delays that these not happen in a normal walking.
For running in place we got an accuracy of 96% little bit
bgger than a normal run.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We presented a methodology for human gait recognition,
to be employed in virtual reality environments exploration.
After capturing the acceleration data using two wiimote
devices attached to the user thighs , we developed a state
machine permitting to detect the user gait based on the
acceleration and period between acceleration peaks. Both
of them were subject of a careful statistical analysis that
lead to a threshold outputted recognition algorithm. Once
that the user start walking or running the system immediately
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detects the changes in acceleration and identified these by the
specified threshold in accelerations and period between peaks
using as referents, outputting the detected gait in real time.
The originality of the approach consisted in its adaptation
to real time Virtual Reality applications, where even a
small delay negatively impacts the quality of the interaction.
Evenmore, the system presented here dose not take much
computational power that could influence in delaying the
time of recognition. We tested our strategy in both real
and virtual environments. Our system was able to detect
acceleration changes in real-time and classified it into the
gait of walking, running and stationary. The corresponding
recognition rates were of 94%, 98% and 100% respectively
in the real environment and of 96% , 88% and 100% in the
virtual one.

B. Future Works
A possible future extension of the model would be to make

a more detailed description of the movements speed using
a combination of acceleration periods and biometric data
from the user. Another possibility would be to estimate the
two-dimensional displacement of the users after a horizontal
movement, e.g. a short run. However, the wiimote controller
requires high frequencies of sampling to be accurate in a
position system and in addition there will be a high level
of noise if the accelerometer is not used in a vibration
diminishing platform. For these reasons, initial studies of
measuring walking/running using accelerometers focus on
motion recognition and not in position estimation. On the
other hand, we plan position estimation to be part of our
future research.
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