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Abstract— This paper presents a novel and low-cost interface
designed for real-time human locomotion speed recognition,
which fits with the exploration of kinesthetic virtual envi-
ronments (VE). According to the interface paradigm, the
human locomotion recognition feeds VE navigation control. An
experimental session has been organized in order to acquire
acceleration data related to locomotion of 10 healthy subjects
(men and women) aging between 23 and 35 years. A treadmill
has been used to capture the velocity at which subjects were
moving. Our system was designed to optimize classification
performances in human locomotion speed recognition in real-
time. The recognized human speed locomotion has been shown
to enhance users’ sensation of presence in the virtual environ-
ment. A simple scenario has been developed to assess the system
functionality. The experiments carried out show that our system
is excellent at classifying a wide range of human locomotion
and can be used both in virtual and augmented reality (VR)
environments for improved interaction.

I. INTRODUCTION

Fig. 1. The experimental Virtual Reality Environment.

The trend in VR is to simulate environments which seem
increasingly real to humans. However, one of the principal
limitations is in the actual size of the physical visualiza-
tion spaces. Hence, despite the advances in human motion
recognition, research attention is still required to develop
new devices and algorithms that facilitate and make realistic
navigation issues in VR environments. The improvement of
these systems make the human-VR interactions more natural,
and provide users with a better sensation of full immersion.

Motion recognition systems are based on different types
of capturing technologies. We distinguish marked from
markless based approaches. The former relies generally on
tracking optical markers attached to a person [12], [13], while
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the latter tracks features appearing naturally in videos [3],
[10], [11]. In professional applications a common choice
is to adopt optical motion capture systems. These systems
have the advantage of being accurate but expensive as they
require users to wear markers in proper patterns. As a result,
these systems must be set up appropriately in advance.
Recently new and accessible devices are emerging on the
market, such is the case of the wiimote device that has
accelerometer sensors. Accelerometers are easy to handle
and they do not need previous setup. The information pro-
vided by accelerometers is poorer than the one available from
position trackers, yet usable for specific kinds of structured
interaction. In [7], Shiratori has shown how elementary
classification of patterns applied to low cost device can
animate virtual subject motions. Liu [8] used HMM applied
to accelerometers path to correlated choreagraphical data.
We benchmarked this type of sensor previously, in [6] we
presented a system to recognize human gait for augmented
VE exploration. The system successfully classified between
walking and running gaits, since the implementation of
this system was based in a careful study of the human
locomotion behavior during walking and running. However,
the results of such benchmarks showed a lacks of fidelity in
locomotion reconstruction when elementary locomotion as
well as constant speed navigation were addressed.

All the existing attempts use classification tools to simulate
a virtual gesture of the user without correlating in that spe-
cific navigation properties that are induced by acceleration
profiles. For such reasons, we addressed the development of
a novel algorithm that, besides the detection of walking or
running, provide relevant indicators for the navigation speed
control. Finally, the goal of our research was to focus on
off-the-shelf sensors. The sensors employed take advantage
of new and easily accessible technologies in the market, as
the wiimote control (Fig. 3). One of the advantages of leg
based sensors is that the users do not need to use their hands
to navigate in the VE. The hands are free to perform other
interaction activities.

In what follows we propose a sensor system to detect
different speed variations in human locomotion in real time,
based on neural networks (NNs) as classifier. The NN are
trained in a calibration phase and hence they can be suitable
for real time computation at a reduced computational cost.
In addition, as we will see, with respect other classification
methods (such as HMM) the proposed approach allows
scalability of navigation velocities while optimizing the
computational cost.

With respect to existing devices, the proposed system was
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Fig. 2. Block diagram of the speed locomotion recognition.

calibrated and benchmarked with subjects moving in a real
condition in order to have an optimal estimation of the speed.
Ten subjects, pacing at different velocities contributed to
collect a dataset for the NN training. A treadmill, and an
external positional reference, were employed to ensure that
the dataset was collected at known constant velocities. A
set of accelerometers were attaced to user’s legs during data
acquisition. The constant velocity of the treadmill do not
affect the accelerometer signal profiles.

In order to improve the robustness of the reconstruction,
the acceleration data were analyzed in the frequency domain
and selected features fed the classification network. Once
trained the Network was converted in an online estimator
of the speed locomotion. The estimated locomotion speeds
were then provided to the VE rendered (XVR). A schematic
block diagram that describes how the locomotion classifier
were integrated in the VE system is given in Fig. 2.

Among the advantages of the devised approach, we would
also highlight the fact that the presented system does not need
any calibration approach to adapt to different users. This is a
direct consequence of the inter-subject optimization achieved
in the design phase.

The quality of the developed algorithm was tested through
a 3D virtual environment, which has the finality to give the
user visual feedback of his/her locomotion and create the
user’s sensation of moving in a park. To create this illusion,
we used objects such as virtual trees, a road, blue sky and
mountains. (Fig. 1).

The paper is organized as follows: Section 2 gives an
overview of related works. Section 3 provides details of the
algorithm employed to recognize human locomotion speed
in real time.

II. RELATED WORKS

A. Motion Recognition

Using accelerometers attached to the body is a method
that has been proven effective for human motion recognition.
Ling Bao [19] proposed a system for activities recognition

Fig. 3. Wiimote controller device with the axes reference.

using five accelerometers worn on different parts of the
body. Features such as energy, frequency-domain entropy,
and correlation were computed on the acceleration data, over
6.71 s sliding windows. Several classification methods were
then applied and their performance tested on 20 everyday
tasks activities of daily living (walking, running, bicycling,
reading, stretching, etc.). A. Mannini and M.Sabatini [31]
proposed a method for classifying human physical activities.
Using five accelerometer, they computed data frame lasted
at 6.7 s with every new frame available every 3.35 s.
Features such as DC component, energy, the frequency-
domain entropy, and correlation coefficients were computed.
N. Ravi et al. [21] developed a system to recognize activities
using a single accelerometer worn near the pelvic region.
The authors computed features over a sliding window of
5.12 s which was sufficient to capture cycles in the different
activities considered. As for the classification, they evaluated
the performance of the base-level classifiers as well as the
meta-level-classifiers such as boosting [24].

T. Huynh and B. Schiele [25] studied the effect of comput-
ing several features over different window lengths (0.25, 0.5,
1, 2 and 4 sec) on the recognition rates of common activities
using acceleration data. The authors concluded that a better
recognition occurs when selecting different window lengths
for different activities. For example, the 1 second window
has been chosen for the activities ’jogging’ and ’walking’;
the 2 and 4 second windows are more adapted for ’skipping’
and ’hopping’, and the 0.25 and 0.5 second lead to a better
recognition rate for the activity ’standing’.

Takeuchi et al. [22] investigated, between the frequency
and the time domain, the best features parameters for human
action recognition. The authors employ the acceleration
information in three axes and their derivatives as the base-
line method in the time domain. They use Mel-Frequency
Cepstral Coefficients as feature parameters in the frequency
domain. They found that the best recognition rates are
obtained when the features of the axis that contained most
of gravitational acceleration information were included.

For the best locomotion interpretation, our method em-
ploys both time and frequency domain analyses on the
acceleration information in order to recognize the changes
in the locomotion speed in real-time. The algorithm is
conceived to operate in real-time in order to allow Virtual
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Reality Exploration (VRE). In this condition even a small
delay negatively impacts the interaction. During a treadmill
walking the simultaneous, locomotion accelerations were
measured. Data were sampled at 20ms period, accelerations
were interpreted in frequency domain.

In order to maintain low the computational burden of
the motion detection algorithm, frequency features properties
were analyzed by visual inspection. Successively, frequency
data were used to train a NN. Finally the trained NN was
embedded as a real time sensor that delivers the user speed
when locomotion are detected in the VE. This information
were sent to the VR engine(XVR) coherently with the
locomotion of his or her.

B. Environment Navigation

True locomotion base is not yet uncommon in VE naviga-
tion. The most common alternatives are: flying, via the use of
a wand; simulated walking, with uniform velocity determined
through a position or inclination tracker; and normal walking
without any speed control. In the latter case, the location
and orientation of the larger virtual environment is typically
corrected at regular timings in order to match the position
of the subject in the real environment [23].

Immersive virtual environments (IVE) have several ap-
plications, ranging from architectural design to situational
awareness training. Such VR systems require that the pro-
prioceptive information, that we use unconsciously to form
a mental model of the body, be overlaid with sensory data
that are supplied by computer-generated displays [29]. The
main problem in VE research is still the continuing search
for most natural ways of human interaction (full immersion).
Previous studies have demonstrated that real walking in
virtual environments is better than virtual walking; it is
more natural and produces a higher sense of presence than
other navigation methods [17], [18], [29]. The actions and
perception of the user should be in sequence with the VE.
Therefore, the new generation of sensor systems used for
virtual human interactions should be more robust in human
action recognition. In our days a sensor system is higher rated
when it is designed to respond to several unexpected events
during the interaction. These systems should be designed
using devices easy to setup previous to the interaction and
more accessible.

III. REAL-TIME HUMAN LOCOMOTION SPEED
RECOGNITION

A. Methodology

The acceleration behavior during human locomotion is
crucial in selecting relevant features for gait recognition.
When we walk or run, our movement is cyclic and our legs

are constantly transitioning between two phases: stance and
swing [12]. The stance phase is active when the foot is placed
on the terrain, while the swing phase is active during the foot
air floating.

It is typical that in the floating phase the acceleration of the
foot is in the forward direction, while in the stance phase the
foot is almost resting. This repeats cyclically during walking
or running. The swing phase is characterized by a down-up
course of the acceleration, ending with the heel-strike. The
latter is usually clearly visible as a negative peak.

These conditions allow us to perform a clear phase seg-
mentation of the user locomotion as described in [6].

1) Data Acquisition: An experimental champaign was
carried out to extract relevant features from the acceleration
signal. The ideal situation is to get acceleration samples from
subjects who walk and run in a regular pattern (constant
speed). However, during a natural walk or run, the person
velocity presents small variation from regularity. To mini-
mize these variations, to reduce the space required for the
capture campaign and to ensure that the average velocity
was correctly collected, a treadmill with preset velocities was
used to impose the speed at which the users had to move.
Therefore, we have asked 10 healthy subjects, aging between
23 and 35 years, to walk and run on the treadmill.

In this manner the locomotion references for 3km/h,
4km/h, 6km/h and 8km/h were collected. During the test
campaign two portable devices were bound to user’s thighs
(Fig. 2), close to the knee joint, which performs most of the
work during human locomotion [5] and is the most useful
information to discriminate activities [19].

The acceleration data acquired from the wiimote at sam-
pling frequency of 50Hz was then sent to a PC via Bluetooth
and analyzed in a Matlab/Simulink environment.

Fig. 4. Acceleration data obtained at 4 min from the velocities of: 0km/h,
3km/h, 4km/h,6km/h and 8km/h.
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2) Feature Extraction: To compute the subject’s speed,
we transformed the acceleration signal (fig. 4) in the fre-
quency domain using for it the absolute value of the Fourier
transform (FFT). The acceleration information were chunked
in series of N samples overlapping windows which are
updated each sampling time (20 ms). The FFT reduces the
number of computations needed for N points from 2N2 to
2N lg N, where lg is the base-2 logarithm. In our case
we used N=200 for the training phase, and N= 64 during
the navigation phase (Fig. 5). In both cases we trained the
following NN to recognize the velocity at the end of the
sequence, thus minimizing the perception of the delay to
20ms (plus computational time) in total.

After a visual comparison of the several transforms, we
chose the most characteristics data of the frequency as the
features used to training the NN for the human locomotion
classification. Our algorithm uses the features from the
frequency components shown in the vertical axis acceleration
that reflects the acceleration provided by the rising and
lowering of the body and give more information about the
person’s locomotion [19], [22]. Therefore, to get translation
invariant operator in the signals, consistent features from
different parts of the walking cycle were extracted. We create
a matrix with the following relevant features to train the NN:

• The mean of the 6 values of discrete frequencies close
to the first sampling border.

• The 5 values obtained from the coefficients of a 4th
degrees polynomial computed to interpolate the absolute
values of FFT data.

• The mean of the 6 values of discrete frequencies close
to the end sampling border.

Only the discrete frequencies close to the sampling
border are consider relevant since they show the highest
variance amongst the data. These features are show in
the figure 5 in the orange ellipses. The polynomial is
use to find the coefficients of the signal of degree N=4
that fits the best data sense, in a least-squares. And
return a row vector (P) of length N+1 that contain
the polynomial coefficients in descending powers,
P(1)XN +P(2)X (N−1)+ ...+P(N)X +P(N +1). In our
case we give 64 FFT values and it output 5 frequency
values. These values represents half of the FFT signal since
the FFT is symmetric. From Bayesian point of view, many
regularization techniques correspond to imposing certain
prior distributions on model parameters. Regularization
involves introducing additional information in order to solve
an ill-posed problem or to prevent overfitting. Therefore, the
selection of only few features allows a computation-heavy
algorithm.

Fig. 5. Windows of the absolute value of the Fourier transform for each
200 acceleration samples.

3) Classifier Implementation: For the complexity of the
data, we decide to design a classifier base on NNs. The
most suitable NN for our system is a feedforward Multi-
Layer perceptron Neural Network (MLP) [30] some of its
characteristics are: a) The model of each neuron in the
network includes a nonlinearity at the output end. b) The
network contains one or more layers of hidden neurons that
enable the network to learn complex tasks by extracting
progressively more meaningful features from the input pat-
terns (vector). c) The network exhibits a high degree of
connectivity, determined by the synapses of the network.
These NNs have two different kind of signals.
• Function Signals, its come into the input, propagates

forward (neuron-by-neuron), and emerge as an output
signal of the network.

• Error Signals, originate at an output neuron of the
network, and propogate backwards (layer by layer)
through the network.

The design of our (MLP) classifier was done with three
layers. The first layer consist on 5 components of the input
data vector, correspond to the hidden layer that are 20
neurons; the third layer is the output that correspond to the
classified of the different velocities; an intermediate hidden
layer for data processing. (Fig. 6) The method used to
train the network was Backpropagation. This algorithm lets
each node’s weight change and being more adaptable to the
desired output.

By using samples for 10 different subjects we ensure
a good intra-subject generalization, while the selection of
only 7 features to feed the NN allows an excellent classifier
algorithm (Bayesian regularization). The regularization gen-

139



eralization ability is not dependent on using a small number
of neurons, but requires more computing power. A MLP
network with 20 neurons proved to be balanced between
these requirements; increasing the number of neurons has
no more impact on the rate and indeed exhibited a loss
of selectivity. The NN training was performed off line,
this training method is not part of the on-line simulation.
In paragraph B) is explained how the on-line model was
implemented.

Fig. 6. A feed-forward multilayer perceptron (MLP) network with 20
neurons.

4) Validation of the locomotion speed classification: In
order to estimate the accuracy of our predictive model, we
applyed the technique of cross-validation, also called rotation
estimation [26], [27], [28]. Data is divided into comple-
mentary subsets called (training_set), and (not_train_set).
(training_set) are the subsets used for training the NN and
(not_train_set) is the subset used to test the NN. One round
of cross-validation includes training as well as one test of
the NN. In our validation process we performed 10 rounds
on various (training_set) with (not_train_set). The error of
the predictive model is then computed as the normalized
absolute value of the difference between inputted style ve-
locity and model(NN) locomotion output classification. The
fig. 7 shows the obtained mean and standard deviation og the
speed recognition from the 10 rounds cross-validation test
for the each velocity (0km/h, 3km/h, 4km/h, 6km/h, 8km/h).
The error (ε) was estimated with the formula that is shows
in equation 1, where ob j represent the desired velocity and
model is the obtained output from the NN. The table I shows
the obtained error for all velocities overall, it was 4% then,
the accuracy of our NN was 96%. After this result we train
the NN with all the 10 set samples, the training duration
for the NN was 5.47sec and the performance computed
with the mean square error method (with regularization)

TABLE I
PERCENT OF ACCURACY AND ERRORS OF THE 10 ROUNDS

CROSS-VALIDATION TEST

Speed 0km/h 3km/h 4km/h 6km/h 8km/h
%Accuracy 99.92 92 94 99.9 94.5

%Error 0.0793 7.93 6 0.1067 5.525

was 0.24%, where the maximum number of repetitions
(EPOCHS) reached at 100. The cross-validation tests and
the train of the NN were performed in Matlab version 7.10
on an Intel i7-720QM (1,6GHz) CPU mobile and 4.096MB
of memory. Once locomotion recognition is successful, we
developed a real time sensing component explained in the
following section.

Fig. 7. Speed recognition with Cross-Validation test of the 5 velocities
(0km/h, 3km/h, 4km/h, 6km/h, 8km/h).

ε =

(
|ob j−model|

ob j

)
100 (1)

5) Extrapolation test: In order to verify if the velocities
are property extrapolate, we tested the NN with intermediate
velocities, such as 5.5km/h and 7km/h, which are not used
for training the NN. The Fig. 8 shows the results for both
velocities 5.5km/h(red line) and 7km/h(blue line) during 21
seconds test. The most interesting in the results is that the
NN never confuse the given (not train) velocity with one of
the train velocities.

B. Online recognition model

1) Feature extration: A Simulink state machine has been
built to perform FFT through recursive estimations. See (Fig.
10) magenta block. 1st recognition is delayed due to the lap
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Fig. 8. Rate recognition of 6 different samples of 5.5km/h (red line) and
7km/h (blue line) velocities during 21 seconds test.

of time necessary to achieve data for FFT (N=64 or 200)
at the beggining. To solve startup issue, a startup sequence,
describing a stationary subject, is preloaded. Therefore, the
first output at 20ms for the NN will be a non-moving
feature as subjects are usually locomotionless when starting
an interaction. Then, values from the recursive cycle are
progressively replaced with values from the subject’s loco-
motion without delay. According to figure 9, Xs represents
the input values (acceleration data), into the state machine.
The state machine implements a recursive estimation of the
most adherent FFT this prosses is represented in the (Fig.
9) by the red block. Each output from the latter is a Yks
matrix from which are selected the current features, in order
to feed the NN. The FFT (Yks) for each 200 acceleration
data are shown in fig. 5. The online feature extration are
reprecented in (Fig. 9 yellow block), the two select blocks
extract from the FFT the mean of the first and last six values,
while the POLYFIT block extract from FFT the 5 values of
the polynomial degree of 4.

2) Implementation of the embedded sensor: In order to
read more than one Wii controller and to enable the PC
to handle the acceleration data from the wiimote a "C" S-
funtion was designed. The function relies on the Wiiuse
library [4]. The S-funtion sends acceleration data to the state
flow, wich is shown in the figure 10 together with the features
extraction polynomial, and the classification network. The
use of the embedded coder and the real time workshop
finally helped us to package everything in a single executable
module.

Once the gait is identified it sends the information to the
virtual environment by a UDP protocol. Therefore, the veloc-

Fig. 9. Feature extraction process, the red block represents the recursive
process to estimate the FFT (cf. fig. 10, the state machine block), while the
yellow block represent the feature extraction process (cf. fig. 10, the feature
extraction block).

ity of the moving environment mirrors the speed locomotion
of the user during interaction. The Simulink setup provides a
flexible framework for handling the recognition in real-time.
The models used in the VR environment were designed in
3D Studio Max. The virtual environement application was
developed in XVR, which provides facilities to operate with
3rd party software without complexity[16].

Fig. 10. Simulink implementation of the phase classifier.

C. Test Setup

Two portable devices (wiimote controllers) were used to
register the acceleration signals [2] from the user’s thighs
(Figure 11). The wiimote communicated with the com-
puter via a Bluetooth adapter, which provided a suitable
operating range (from 1m to 100m). These devices sensed
both rotational and translational accelerations by the triple-
axis accelerometer (ADXL330) embedded in the controller:
backward-forward (x-axis), lateral (y-axis), and vertical (z-
axis) (Fig. 3).

The accelerometer has a measurement range of ±3g
(where g is the gravitational acceleration) and output analog
voltage signals proportional to the acceleration. Four video
projectors were used to display the images of the 3D Virtual
environment. A treadmill was used for the walking sessions.
The projectors were connected to the two scene rendering
PC and a scene master which provides environment syn-
chronization on each different rendering image[9]. Infitec
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TABLE II
PERCENT OF ACCURACY AND ERRORS OF THE ONLINE TEST

Speed 3km/h 4km/h 6km/h 8km/h
%Accuracy 95.2033 95.85 97.045 94.4

%Error 4.7967 4.15 2.955 5.605

polarizing lens were adopted to achieve stereography through
the use of wavelength polarized light. The embedded master
receives the embeded sensor data through the common socket
connection and provides to move coherently a virtual camara
in the designed scenario.

Fig. 11. The full system setup (the use of the treadmill for the interaction
is optional).

1) Online experiments and results: In order to test the
online model, we performed experiments using the treadmill
to indicate the velocity in which the subject move. We
asked 5 subjects aging between 23 and 35 years, (them
accelerations were not used to train the NN) to walk at
various (3km/h, 4km/h, 6km/h, 8km/h) velocities. We feed
our system with the user’s thigh acceleration obtained from
the two devices. Then we compared the output speed of
our model with the real speed locomotion of the user. The
mean speed recognition and standard deviation are shown
in figure 12. The error of the model was estimated using
the equation 1 as explained before in paragraph 4). In the
table II is shown the percent of the obtained error for all
velocities overall, it was 4.38% consequently, the accuracy
of our online classifier was 95.62%. The figure 13 shows the
output speed recognition, obtained by an user’s locomotion
using a treadmil during 42sec online interation.

Fig. 12. Online Speed Recognition.

Fig. 13. Signals of the speed recognition online, obtained by the user’s
locomotion using a treadmil during 42sec.

IV. CONCLUSIONS

This paper presented a low-cost system for human locomo-
tion speed recognition for Augmented VEE based on NN. A
treadmill has been used to impose subjects velocity during
a training phase. The accelerations of the user locomotion
were coherently measured and subsequently converted to
the equivalent frequency representation. Frequency data were
used to train a NN so that it could classify and recognize
the subject’s global velocity. These features were analyzed
carefully in order to develop a system which does not request
much computational power, and can be easily adapted to the
user needs. Here, we addressed the development of a novel
algorithm that, besides the detection of human locomotion
style, provides relevant indicators for the navigation speed
control.

The carried out tests showed that, given the acceleration
data information over time, it is possible to identify the
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various locomotion speeds with an accuracy of 96%. The
sensor system presented here, feeds in real time the VR snd
the generated VR environment is perceived by the subject
who interacts according to his or her locomotion. This sensor
system can be used for several applications, for which the
exploration of 3D VR environments is needed. It is designed
to be used in VR interactions where users are walking in
place, use real walking or move with any electromagnetic
tracker. Our future work will be focused on perform more
real experiments in order to test our system in different VR
applications.
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