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Abstract

Differences between the signals captured at the
entrances to the left and right ears are generally
quantified by interaural time differences (ITDs), in-
teraural level differences (ILDs) and interaural cross-
correlation (IC). Here, we attempt to gain knowledge on
the changes of these interaural parameters during row-
ing and to evaluate their potential as source of infor-
mation to determine rowing expertise exclusively from
acoustic signals.

1 Introduction

It has been suggested by rowing experts that hear-

ing the boat is among the possible techniques for row-

ing [7]. The motivation of this work is to investigate the

potential of rowing sound as a source of information

to improve the analysis of rowing performance. This

is part of the more general goal of exploring the pos-

sibilities to develop a machine-hearing system that can

perform the following operations: (1) capture binaural

sound during rowing, (2) segment the sound according

to the stroke cycle, or according to the different stroke

phases, (3) extract and analyze relevant acoustic fea-

tures, (4) classify sounds according to level of expertise

and provide an assessment of performance.

In the present paper we address points 1 to 3. Point

4 is evaluated in an accompanying paper [5]. Specific

to point 1, binaural sounds were recorded on three row-

ers. Regarding point 2, a segmentation procedure based

on onset detection is presented. With respect to point

3 we look for features in the patterns of binaural ac-

tivity. That is, we examine changes in the two major

binaural parameters, i.e., the interaural level difference

(ILD), and interaural time difference (ITD) and rela-

tions between them. To this purpose, binaural param-

eters are computed from the binaural recordings using

two models of binaural hearing: the interaural cross-

correlation model proposed by Lindemann [6] and ex-

tended by Gaik [4], and the model proposed by Faller

and Merimaa [3] based on interaural coherence.

2 Capture of binaural sound

A wearable binaural recorder was developed that is

capable of capturing high-quality audio without disrupt-

ing the hearing and performance of the user. This as-

pect was critical because it was not desired that the

recording equipment had any effect on the actions be-

ing performed while rowing. Figure 1 shows a rower

wearing the binaural recording with zooming to the rel-

evant components. Miniature microphones (Knowles

Acoustics FG23629) fixed to the ear holders of and ad-

justable headband (DPA 4088) were placed at the en-

trance to the left and right ear canals, and connected to

a custom-built microphone amplifier placed on the back

of the rower. The output of the amplifier was connected

to the stereo input of a digital recorder (Edirol R-09)

that was placed into a bag tightly fastened around the

rower’s waist. This was done to minimize the risk of

the recorder falling into the water. All recordings were

made with a sampling frequency of 48 kHz and stored

in WAV format with a 16-bit resolution.

Binaural audio was recorded for three rowers: R1,

R2, and R3. Rowers R1 and R2 had 5 years of expe-

rience and rower R3 had 11 years of experience. For

each rower, recordings were made for several velocities

spanning a range between 18 and 40 strokes per minute

(SPM). During the recordings, rowers were required to

call out the velocity every time before they started row-

ing. In this way, the sound portion corresponding to

that specific velocity could be readily identified during

the analysis.

Figure 2 shows a representative spectrogram of a

binaural audio excerpt from R3 rowing at 20 SPM. The

cyclic component of rowing is clearly visualized in the
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Figure 1: Illustration of a rower wearing the binaural

recorder. The microphones are placed at the entrance to

the ear canal.

Figure 2: Spectrogram of binaural audio captured at

the left (top panel) and right (bottom panel) ears during

a 20-strokes-per-minute session.

spectrogram by the periodic increase in acoustic energy

and bandwidth that occurs roughly every 3 seconds.

Each of the periods represents a rowing stroke. Ac-

cording to the international rowing federation, a rowing

stroke is divided into four phases: catch or entry, drive,

finish and recovery. The time instance of the energy in

the spectrogram corresponds to the finish phase, and, as

further discussed below, served to identify the bound-

aries between stroke cycles in the audio segmentation

procedure.

3 Audio Segmentation

The energy increment by about 20-30 dB over a fre-

quency range of 200–8000 Hz that is observed roughly

every 3 s in the spectrogram of Figure 2 is the sound

event corresponding to the finish phase. From a purely

acoustic perspective the finish phase appears to be the

only reliable sound event for the segmentation of row-

ing sound based exclusively on acoustic information.

Audio was segmented in a semi-automatic way,

namely, by visually inspecting spectrograms together

with an onset detection algorithm. A suitable choice

for the segmentation of the rowing sound is the detec-

tion of the onset times of the finish phase. Many on-

set detection algorithms have been proposed for music

signals [2]. Among these algorithms, a simple and gen-

eral approach is based on tracking changes in the spec-

trum of the sound by computing the difference between

successive short-term Fourier spectra on a frame-based

processing. This difference is typically referred to as

the spectral flux, and can be expressed by the equation:

SF (n) =

K−1∑

k=0

H(|X(n, k)| − |X(n− 1, k)|) (1)

where k and n are the frequency and time indexes

respectively, X is the short-term Fourier signal, and

H(x) = (x + |x|)/2 is the half-way rectifier function

used to count only those frequencies where there is an

increase in energy, thus keeping onsets and disregarding

offsets. The frame-based processing was performed as

follows. A Hamming window of 30-ms duration (1440

samples) was employed and a window shift equal to 10

ms was used (480 samples), meaning an analysis rate

of 100 Hz. For each frame a Fast Fourier Transform

was applied using a size of 2048 points (frames were

zero-padded). The resulting spectral flux signal was

smoothed using a Savistky-Golay filter (2nd order poly-

nomial degree) and a sliding window of 32 points. Sig-

nals were normalized to have zero mean and a standard

deviation equal to 1. This process was applied to the left

and right audio signals separately and thresholds were

computed as the root-mean square of the onset signals.

Figure 3 shows an example of the computed onset func-

tion f(n) with the selected onsets corresponding to the

peaks of the function. The selection of a peak in f(n)
was based on the following criteria:

f(n) > f(k) for all k such that n− w ≤ k ≤ n+ w

where w = 3 is the size of the window used to find a

local maximum. As a first approximation to evaluate

the accuracy of the segmentation procedure an autocor-

relation of the onset function was computed. Figure 4

shows an autocorrelation function along with an indica-

tion of the time location of the first peak and how this

peak relates to the rowing speed. The time index corre-

sponding to the first peak of the autocorrelation function

multiplied by the size of the window shift in milisec-

onds can provide an estimate of the speed. Since the

speed of the rower was known in advance it is possible

to compare the estimated speed with the real one and

therefore evaluate the quality of the segmentation pro-

cedure. The smaller the error between the known speed
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Figure 3: Onset function obtained for a rowing sound

with a speed of 40 SPMs. Detected peaks are shown by

circles. The dashed line indicates the selection thresh-

old (see text).
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Time lag=1.53 s

Figure 4: Autocorrelation of the onset function shown

in Figure 3. The time lag of the first (actually second)

peak is shown to be 1.53 s.

and the estimate the better the segmentation procedure.

For the particular example in Figure 4 the index of the

first peak is 153, which, multiplied by 10 ms (window

shift) results in a time lag of 1.53 s. This value would

correspond to a speed of about 39 SPM. The expected

velocity was 40 SPM with an associated stroke duration

of 1.5 s, and thus an error of about 2% was the result of

the speed estimation. This error margin was acceptable

considering that the procedure was complemented with

visual inspections of the spectrograms. In this work the

segmentation procedure was applied to binaural signals

for only three velocities. Table 1 provides a summary

of the number of segments obtained for each rower and

velocity.

4 Binaural activity pattern

The Lindemann-Gaik binaural model [6, 4]

implemented in the Auditory Modeling Toolbox (AM-

Toolbox) [1] was used to compute binaural patterns.

This binaural model is based on a running interaural

cross correlation process for the estimation of interaural

time difference (ITD), and a contralateral-inhibition

mechanism responsible for processing interaural level

differences (ILD). This mechanism sharpens the peaks

in the cross-correlation helping in resolving ambigui-

ties caused when two sources have similar ITDs. The

model proposed by Faller and Merimaa computes ILDs

and ITDs based on the interaural coherence (IC). Both

models consisted of similar processing stages before

the binaural processor: cochlear filtering by a filter

bank, and inner hair cell transduction by half-wave

rectification and low-pass filtering. The output of the

Lindemann-Gaik model is a three-dimensional matrix

with time, time lag (Tau), and frequency channel as

their dimensions. The output of the Faller-Merimaa

model is a set of ILDs, ITDs, and ICs as a function of

time.

Figures 5(a)–(c) show computed binaural patterns for

the three velocities: 20, 31, and 40 SPM. Each panel

displays a 2D representation computed by integrating

the cross-correlation output across frequency channel

(averaged across audio segments). Darker areas rep-

resent higher interaural correlations. The dark region

observed at about 1 s in most panels corresponds to

the finish phase, and indicates that the sound event

associated to the finish phase appears to be formed by a

distributed sound source. From a qualitative viewpoint,

there are no obvious or systematic differences between

the binaural patterns across rowers or velocities. For

instance, distinctive differences between rower R3 (the

most experienced) and rowers R1 and R2 could have

served as features to differentiate performance. In

spite of the lack of qualitative differences, common

patterns across rowers and velocities can also be

advantageous. For example, it is interesting to note

that if a parametric representation of the rowing sound

Table 1: Number of audio segments per rower and ve-
locity.

Rower ID Velocity (SPM)

20 31 40

R1 22 28 18

R2 19 30 20

R3 22 21 13
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Figure 5: Binaural activity patterns of the rowing stroke

for velocities (a) 20 SPM, (b) 31 SPM, and (c) 40 SPM.

Each column represents data from a single rower. Gray

shades indicate amount of interaural correlation with

darker shades indicating higher correlations. The time

lag (Tau) is an estimation of ITD.

is desired for rendering purposes, besides modeling

of its spectro-temporal characteristics, the output of

the binaural model suggests that the sound produced

during the finish phase may be modeled as a distributed

sound source.

In addition, the probability density functions of ITD

and ILD computed using the Faller-Merimaa model

(Figure 6), suggest that for signals highly coherent the

spatial auditory scene differs across frequencies. For

an auditory filter centered at 500 Hz the sound appears

to be slightly extended from the frontal direction,

whereas for an auditory filter centered at 2000 Hz more

lateral sources are observed as shown by the additional

activity in more lateral directions along the ITD axis

(τ ) in the right panel of Figure 6. Again, the same

pattern is observed across rowers and velocities.

In summary, qualitative observations of the changes

of interaural parameters as a function of expertise

suggest that they do not seem to differ considerable

across different rowers. Rather, interaural parameters

showed comparable trends in their changes across row-

ers and velocities. It is therefore suggested to further
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Figure 6: Probability density functions of ITD and ILD

for the rowing sound. Data are shown for rower R3 and

40 SPM. Left, data for auditory filter centered at 500

Hz; Right, data auditory filter centered at 2000 Hz.

investigate their use in the design of a generic para-

metric representation for the rendering of rowing sound.
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