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Abstract

Techniques for machine hearing are increasing their
potentiality due to new application domains. In this
work we are addressing the analysis of rowing sounds
in natural context for the purpose of supporting a train-
ing system based on virtual environments. This paper
presents the acquisition methodology and the evalua-
tion of different machine learning techniques for clas-
sifying rowing-sound data. We see that a combination
of principal component analysis and shallow networks
perform equally well as deep architectures, while being
much faster to train.

1 Introduction

Assessing and measuring expertise in sport is an im-

portant aspect of traditional training, but it assumes a

special relevance when training is supported by robotics

and virtual reality technologies. The execution of expert

performance can be assessed by several means, motion

and task performance being the most common. In some

sports the sound of task execution is already recognized

as being a signature of correct motion. Qualitative de-

scriptions of what elite rowers use as indicative of op-

timal rowing technique include the sounds produced by

blades and boat motion [6].

In the context of rowing training by means of virtual

environments [9], it is important to evaluate expert per-

formance in real rowing and we think that sound can be

a source of information in addition to boat instrumen-

tation. The aim of this work is indeed to evaluate the

potential of rowing sound as a source of information for

the automatic analysis and evaluation of performance.

The specific goal is to explore the possibilities for de-

veloping a machine-hearing system that can locate the

phase boundaries in real-time.

This work compares several supervised algorithms

on an audio dataset recorded at the ears of expert rowers

using a binaural audio-capturing system. Recordings

were made on-boat during rowing on a real setting. This

type of audio data is particularly challenging due to the

presence of multiple sources of noise.

2 State of the Art

Machine hearing techniques have been used in the

classification of several activities like sport for the pur-

pose of extraction of events [10]. The first step of the

classification is typically the identification of the rele-

vant audio features, the mel-frequency cepstral coeffi-

cient (MFCC) and MPEG-7 descriptor being the most

adopted ones. For example, the work reported in [11]

performs a comparison of these features. The sec-

ond step of the processing is the classification itself

that can be distinguished between sequence recognition

based on Hidden Markov Models (HMM) [11] or static

recognition like one based on Support Vector Machines

(SVM) [7] or Artificial Neural Networks (ANN) [8].

Research in classification tasks has in recent years

seen rapid development in the field of Deep Belief Net-

works. These are systems that utilize many layers of

neurons and greedy learning algorithms, producing ef-

fective feature extraction in the lower layers. They have

proved successful in several classification tasks, includ-

ing speech and audio [5].

3 Binaural audio capturing

Rowing sound was captured using a wearable binau-

ral recording system capable of capturing high-quality

audio without disrupting the hearing and doing of the

user. The system consisted of two miniature micro-

phones (Knowles Acoustics FG23629), a custom-built

microphone amplifier, power supply, and a commercial

portable digital recorder (Edirol R-09). All recording

were in 48 kHz and stored in WAV format with 16-

bit resolution. Three rowers participated in this audio-

capturing. Two rowers had 5 years of experience (R1
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and R2), and the last rower had 11 years of experience

(R3). For each rower, recordings were made for several

velocities spanning a range between 18 and 40 strokes

per minute (SPM).

4 Segmentation

Binaural recordings were manually segmented ac-

cording to two classes defined by the combination of

two consecutive stroke phases. One class was defined

by the sequence entry-drive (ED), and the other class

was defined by the sequence finish-recovery (FR).

For the selection of relevant acoustic features a cor-

relation analysis was performed on two of the four ba-

sic spectral descriptors defined in the MPEG-7 audio

content description: audio spectrum envelope and au-

dio spectrum centroid.

5 Methods

In the classification of audio data there are several

possible approaches. In speech recognition HMMs have

been the standard approach for a long time. However,

this is based on the well-studied fact that speech con-

sists of a continuous series of syllables, which is very

close to the HMM’s basic assumptions. We can not as-

sume rowing sounds to have the same structure. For

the general recognition problem we chose from a set of

machine learning approaches with weaker assumptions.

Some of the top performers are Support Vector Ma-

chines (SVMs), Nearest Neighbor-based methods and

Artificial Neural Networks (ANNs). For real-time ap-

plication from large amounts of data nearest neighbor-

based methods quickly turn impractical, while ANNs

and SVMs have been proven to be mathematically iden-

tical if regularization and objective functions are match-

ing [1].

In classification there has recently been a great inter-

est in deep network architectures, starting from a suc-

cessful application by Hinton and Salakhutdinov [3].

Deep networks were previously found to be underper-

forming, which is often attributed to the overly greedy

objective function resulting in poor generalization. Hin-

ton and Salakhutdinov[3] introduced the idea of pre-

training on unsupervised data to improve generaliza-

tion. Although originally based on stochastic Restricted

Boltzman Machines (RBM) units, the concept has been

generalized to various forms of greedy layer-wise train-

ing of non-parametric machine learning algorithms.

We will compare the efficiency of some of these ap-

proaches to the result of the more classic approach using

shallow artificial neural networks and principal compo-

nent analysis (PCA). Our aim is to find a suitable super-

vised algorithm for use on audio data, as well as con-

tribute to the understanding and benchmarking of deep

network architectures.

An identical series of 20 consecutive time windows

of data representing a total of 850 ms were used as input

to all networks. In each time window 11 features have

been selected, 10 for the spectral envelope and 1 for the

centroid, summing up to 220 scalars per classification

point. All the computations have been performed under

Mathworks MATLAB R2010b running under Windows

7 64-bit on a Intel Core i7 940 at 3.06GHz using 8 log-

ical cores and with 6GB of memory.

We present below the different approaches investi-

gated.

5.1 Shallow networks

The shallow networks had a single hidden layer and

performed descent on the objective function using the

scaled conjugate gradient. Performance in early tri-

als converged as the amount of neurons increased. We

chose 20 neurons, after which addition of neurons re-

sulted in no increase of performance. We used a tangent

sigmoid activation function, as trials with the radial ba-

sis function performed slightly worse.

Trials replacing early stopping with the more sophis-

ticated Bayesian regularization gave no change in per-

formance on our data. Since this regularization is im-

practical for the larger deep network architectures, early

stopping was chosen to ease comparison.

PCA was chosen as an additional data pretreatment

for comparison with the lower layers of the deep archi-

tectures. While the ANN will be a comparison for the

classifying abilities, PCA will be a comparison for the

feature extraction aspect of especially the lower layers

in a deep network.

5.2 Deep Belief Networks

A deep belief network here refers to a network con-

sisting of restricted Boltzmann machines. They form

directed networks similar to neural networks, but use

stochastic outputs similar to Boltzmann machines.

We used units with linear energy and trained them

by contrastive divergence [3]. Initially the hidden lay-

ers were determined by greedy layerwise training. The

resulting weights were used as initialization and fol-

lowed by supervised training with backpropagation of

the whole network.

Equal layer sizes of 1000 units were used. Remain-

ing parameters were kept as in Hinton and Salakhutdi-

nov [3].
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5.3 Autoassociator Networks
The other deep network is known as a stacked au-

toassociator network [4].

Two types of autoassociator networks were tested:

first non-linear greedy layer-wise autoencoders, each

consisting of a layer of neural network. Each layer of

a greedy layer-wise autoencoders is trained much like a

regular shallow ANN. Each hidden layer is trained by

adding an additional output layer and training it to re-

construct the input data. After training is complete, the

output layer is discarded and only the encoder is kept.

The output of the encoder is used as input data for train-

ing the next layer. Once all layers are trained, an output

layer is added to the top and trained to mimic the final

target. For the final training we allow errors to back-

propagate through the earlier layers.

Because of deterministic and continuous output we

can use smaller layer sizes than in the case of deep be-

lief nets. Layers consisting of 40 neurons each were

determined to be sufficiently large in this case. Early

trials of layer sizes of up to 1000 neurons did not result

in any significant increase of performance.

The second type of deterministic deep network is

trained in a greedy backpropagating fashion. With this

approach layers are added and trained one-by-one, with

the target always being the training data itself. Lower

layers are fed backpropagating signals and are not kept

constant during training of higher layers.

After adding the final layer the whole network was

trained to match the final target. Like in the greedy

layer-wise approach 40 nodes were sufficient in early

tests.

6 Results

All networks were trained on data sets from two row-

ers and evaluated on a test data set from a third rower,

thus measuring the intrasubject generalization ability.

Each data set included strokes from all the different ve-

locities performed by the respective rowers. Manual

classification was used as training class and for valida-

tion of the third rower.

The test set performances are represented in Table 1.

Error is expressed as the fraction of misclassified sam-

ples and timing is the running time on the test com-

puter. Fig 1 shows the training classes and classifica-

tion plotted on the principal components and the same

data mapped by the final nodes of an autoassociator

network, where the final layer size is restricted to two

nodes.

7 Conclusions

On our data none of the deep architectures out-

performed the simple PCA/ANN approach. This ap-

Table 1: Performance of different machine learning ap-
proaches.

Method Train error Test error Train time

ANN, shallow 0.39 0.40 6 min

PCA+ANN, 1 0.43 0.40 4 min

PCA+ANN, 2 0.41 0.40 4 min

PCA+ANN, 10 0.30 0.23 5 min

PCA+ANN, 210 0.28 0.21 7 min

AA, prog, 1 0.43 0.44 21 min

AA, prog, 2 0.40 0.43 23 min

AA, prog, 210 0.26 0.35 27 min

AA, greedy, 210 0.36 0.43 23 min

DBN 0.17 0.29 180 min

Number in method column is the number of principal

component used for PCA or the size of the output layer

for autoassociator networks. Error measurement is the

fraction of misclassified test data.

proach is both fast and efficient in the recognition task,

which makes it ideal for phase recognition. The next

step will be to implement it within the reinforcement

learning framework of boundary placement in real-

time. Two possible approaches will have to be con-

sidered: heuristic methods and reinforcement learning

algorithms. While the former approach is faster and

easier to implement, the second benefits from reaching

Figure 1: Top right: True classes placed on the two
dimensional output layer of a progressive autoencoder.
Bottom right: Class recognition of the autoencoder in
the output later. Top left: True classes placed along the
two largest principal components. Bottom left: Class
recognition using the two largest principal components.
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the locally optimal policy. However, the local optima of

policy ascent methods can be rather poor, so the relative

efficiency of this approach is still an open question.

Perhaps surprisingly, no network was able to out-

perform the combination of PCA with 220 components

and ANN. Since the raw data vector has 220 compo-

nents, the benefits are derived from the decorrelation

of data rather than data reduction. It seems that the

decorrelation has a positive effect on the regularization,

which makes sense from the perspective that the nor-

malized inputs are generally assumed to be uncorrelated

for weight decay to be compatible with the generalized

Tikhonov regularization. It seems reasonable to assume

a similar relation using early stopping.

Similar results were achieved by Ballan et al. [2]

on noisy sound data, where deep belief networks also

performed considerably worse than shallow networks.

Future direction of this work will be to apply the

same method on the larger raw Fourier series and ex-

tending the number of participating subjects.
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