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Abstract— In this work we present a method to produce a
model of human motion based on an expansion in functions se-
ries. The model is thought to reproduce the learned movements
generalizing them to different conditions. We will show, with an
example, how the proposed method is capable to produce the
model from a reduced set of examples preserving the relevant
features of the demonstrations while guaranteeing constraints
at boundaries.

I. INTRODUCTION

A. Aim of the work

In this work we present a framework to model human

trajectories. Some general ideas have been presented in [1],

in this paper we describe in details the steps to apply the

method. The key idea is to produce a model that satisfies

dynamic constraints of the performed task while maintaining

the likelihood to the provided samples. We assume that an in-

ternal, at least simplified, model for motion does exist, which

has been proven for specific selected motions [10]. We will

describe the algorithms applied to obtain the behavior model

from observed data and show how the model obtained can be

used in real time to interact with a simulated environment.

Several system to model human motion have been de-

signed in literature. As an early example we can cite [7]

were the purpose was to design multimodal environments

designed for the transfer of human abilities. Since then

several, more advanced systems, have been developed e.g.

Avizzano [9], Henmi [11], Esen [12] among others. Learning

is often performed, to achieve better performances in a

’latent’ feature space by most common learning models

such as Switching Linear Dynamic Models (SLDM) [13],

Gaussian Mixture Regression (GMR) [14], Dynamic Motion

Primitives (DMP) [3], Local Weighted Process Regressions

(LWPR) [19], Gaussian Processes [16] [17], Stable Estimator

Dynamical Systems (SEDS) [18] and Sequenced Linear

Dynamical Systems [8].

B. Design Specifications

The described method is designed to meet the following

requirements:

• stability;

• robustness to outliers;

• generalization: ensure trajectory generation that can met

with not-shown boundary conditions;

• adaptation: replan ongoing trajectories while maintain-

ing continuity and minimal distortion from examples;

• error tolerance;
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We are interested in solving the problem of motor pro-

gramming through the creation of a mathematical model

of human behavior. This model should be based on the

observation of several repetitions of a task. The observation

should be allowed to consist in different kinds of movements

that are classified as homogeneous by the user. We suppose

that this is possible because movements, that are part of the

behavior pattern characterizing the expression of a particular

skill, show strong similarities as shown in several works such

as [5] and [22].

In this work we present a model and a methodology to

learn motion patterns from a given (reduced) number of

repeated examples and learn the relationships among the

variation in the boundary conditions and motion patterns.

The methods we addressed in the previous section are

based on an implicit description of the trajectory performed,

i.e. a set of differential equations. In this method we use an

explicit expression of the trajectory. This implies the stability

of the trajectory.

II. METHOD EXPOSITION

A. Problem description

We identify a task with the trajectories produced by a

human while performing it. The trajectories take place in a

space of variables considered relevant for the task itself, e.g.

for a reaching task the position of the performer hand in

the space could be considered. We assume that the motion

pattern that we are going to describe can be segmented in

several phases. This method is based on the production of a

model for each phase, built on the basis of sample trajectories

Yi, a vector function of time. The samples Yi should be

obtained recording the user movements. The model consists

in a mapping between a vector of contour conditions Q and

a performed trajectory Y . The contour conditions consist in

the value of some relevant variables that can be different

from the ones in Y . The model for a phase can hence be

represented as the application:

Y (t) = Ψ(Q, t) (1)

B. method overview

The performed task can be described as a trajectory,

function of time and some contour conditions (e.g. in a

reaching task these could be represented by the initial hand

positions and the target position). The phases may repeat

through the development of the task and hence different

segments can be instances of the same phase.

We base our model on a function expansion of trajectories.

Function expansion series have proven to be effective in pre-

vious human-motion approximation approaches. Traditional
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TABLE I

NOTATION

Yi A motion trajectory (a function of time)
Φ The expansion function set
Pi The function expansion coefficients (a vector)
Qi The contour conditions
t time
Ti trajectory duration
τ Normalized time (ti/Ti)
F Matrix representing the regression hyperplanes

polynomial [23] or orthogonal polynomial [25] expansions

were applied in several minimum theories related to human

arm motions. Several types of orthogonal function are em-

ployed, for instance Biess [24] proposed an expansion based

on Jacobi polynomials and Fourier series.

We proceed transforming each segment into a set of pa-

rameters (the coefficients of the function expansion) then we

perform a linear regression between the contour conditions

and the parameters. Each variable describing the trajectory is

treated separately. The coupling between different variables

can consist in the fact that one variable’s value can represent

the contour condition for another variable.

C. Parameter Fit

In order to explain the method in details we introduce

some important quantities, listed in table II-C

We assume that the each phase is processed separately,

hence the index i addresses the ith example of a given

phase. The time t is 0 at the beginning of each example. The

coefficients vector Pi is not computed directly on Yi but on

a warped version of the trajectory Ỹi = Yi(t/Ti) = Yi(τ).
In detail the vector Φ has the following form:

Φ(τ) =





















1
τ

sin(πτ)
sin(2πτ)
sin(3πτ)

· · ·
sin(Nπτ)





















(2)

The first two components of Φ represent a linear translation.

The corresponding parameters can be set directly to Y (0) and

Y (1) − Y (0). The other parameters represent a description

of the function:

D(τ) = Ỹ (τ)− (Y (0) + τ(Y (1)− Y (0))) (3)

The number of components N can vary to match the require-

ments of precision and compactness of the representation. It

is important to note that, although τ ranges from 0 to 1 during

the development of the example, the period of the first sinus

(third component of Φ is 2. This is thought to allow the

trajectory represented by Pi to have a different slope at the

beginning and at the end as shown in figure 1. In particular,

for each demonstration, we compute the coefficients Pi of

the extended trajectory

p(τ) =

{

D(τ) : 0 ≤ τ ≤ 1
−D(1− τ) : 1 < τ ≤ 2

(4)

so that Pi = argminPi
|Piφ(τ)− p(τ)|. The first two

components of Pi are computed explicitly, while the second

one can be computed performing an FFT. The symmetry of

p(τ) assures that just the coefficients associated to the terms

in 2 are different from zero.
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Fig. 1. A trajectory of duration 1 extended to a period of 2. This allow
the trajectory to have a different slope for τ = 0 and τ = 1

A minimum square error linear regression between the

vectors Qi and each component of Pi is then performed. The

vector Qi is augmented with a 1 so that a linear application

can map an affine function from Q to Y . The minimized

error takes the form:

SQE =

n
∑

i=1

(Pi − F ;Qi)(P
T
i −QT

i ;F
T ) (5)

where F is the solution produced by the regression:

F = [P1P2 · · ·Pn]

[

Q1 Q2 · · · Qn

1 1 · · · 1

]†

(6)

where the indexes from 1 to n address one of the n
trajectories provided as examples. Notice that in general

n >> N , i.e. the examples are more than the components of

the vector φ. the matrix built with the Qi is hence expected

to have full rank (equal to the number of components in

Q). The pseudoinverse in 6 produces an hyperplane Two

sample hyperplanes which were obtained by the regression

performed in the example in section III-A are shown in figure

2.

D. The Training Algorithm

The algorithm performing the parameters adaptation can

be summarized into the following steps:

• Choose the variables in Y and Q, characterizing the

task that is going to be modeled;

• Define segmentation criteria for the sampled data. It is

important to consider that, in order to use the obtained
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Fig. 2. two motion interpolation planes. the task is performed in a
two-dimensional space, where the user moves the hand vertically and
horizontally. The 2 graphs represent a component of Pi determining the
horizontal motion (top) and a component of Pi determining the vertical
motion (bottom) as function of Qi, that, in this case, consists into the
horizontal and vertical displacement between the positions at the begin
and at the end of the trajectory. Blue dots represents components of the
parameter vector Pi computed on the basis of a single example

model to generate a behavior, the segmentation criteria

should be based on data available online. Segmentation

can be performed on the basis of the variables defining

the trajectory (e.g. a position is reached) or some

functions of them (e.g. the speed) or some relative to

the environment (e.g. catching a given object);

• segment data obtaining several chunks, representing

samples for the task’s phases;

• scale each chunk in time so that it is warped in a interval

of time of unitary duration. A number of samples

to represent it is defined. This emphasizes the shape

of the performed trajectory. We preferred an uniform

scaling (formally expressed by the parameter Ti in

the previous formulas) over other more complex time

warping systems because it is easily applied in real time:

we rely on dataset segmentation to obtain chunks of data

representing trajectories with the same shape;

• for each sample chunk Yi compute the sample param-

eters Pi vector. Our particular choice of Φ allows us

to compute the first two components of P analytically

on the basis of the initial and the final position of the

trajectory and then to obtain the series expansion of the

residuals representing the rest of the parameters.

• Perform a linear regression to obtain F , a mapping from

Q to P .

E. Generating the Trajectories

After the training phase the model is defined by the vectors

F . To generate the trajectories we compute the parameter

vector at the beginning of each phase:

P = F

[

Q
1

]

(7)

then, during the phase Y is computed as:

Y (t) = PΦ(t/T ) (8)

The first two components of P are set directly to match

the initial and the final value of Y . The trajectory is then

performed until a segmentation criterion is met and the phase

is considered ended. It is important to point out that, in order

to generate the behavior Qi and Ti (or directly τ ) should be

available in real time. The parameter T should be computed

on the basis of the task and the state of the environment.

The stability of the trajectory is guaranteed by the closed

form in which it is expressed.

The computation of the trajectory is very fast, consisting

basically in two matrix product to compute respectively P
and Y . The system is hence suitable to be used in real time.

An example of generalized trajectories, together with the

sample data is shown in figure 3.

F. Imposing Constraints

It is possible to impose a constraint on the derivative

of the state variables at the end of the phase, the final

velocity vconstrained. We performed this by first computing

the parameters for the reaching task then correcting it, and

hence, in the general case, obtaining a different final position.

Given the parameters vector P representing the trajectory

without the constraint we have a final velocity vfree =
dΦT

dτ
P

at time T the correction to ∆P to P can be expressed as:

∆P = F

[

dΦT

dτ
F

]†

[vconstrained − vfree] (9)

This formulation finds the closest point lying on the

regressed hyperplane (equation 7) verifying the constraint.

The convenience of this choice can be shown through

an example. In figure 4 we show the difference in the

trajectory produced by the trajectory correction explained in

the equation 9 and the one produced relaxing the constraint

of lying on the hyperplane: although closer in the space of

parameters to the reaching task the latter solution produces an

unnatural movement, in contrast to the former that preserves
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Fig. 3. Sample movement for a dynamic reaching task in virtual reality
i.e. catching a falling ball (top) and the generalization obtained through the
proposed modeling. Qi consists into the displacement between the position
at the beginning and at the end of the trajectory. Trajectories are plotted
with different colors to improve readability

the characteristic shape of the gesture. Moreover this exam-

ple shows that the regressed hyperplane is highly descriptive

about the nature of the movement. The example has been

produced with data from the task described in the section

III-A

G. Trajectory Correction

As stated in the introduction we are interested into the

development of an adaptable system. With adaptation we

mean the ability to change and replan the motion strategies in

consequence of the results of the actions on the environment

or in consequence of external changes coming from the

environment. This capability is typically captured in motion

control system through the use of closed loop controllers

that monitor a tracking error in order to produce correlated

changes in the motion. For example suppose, at relative

normalized time τ = 0, to have determined a motion vector

Pi associated to given conditions Qi on the begin and the

end of the trajectory. We consider two cases in which the

trajectory should be corrected:

• replan due to motion control errors;

• adaptation due to target changes.
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Fig. 4. Reconstructed trajectories (top) with the constraint of reaching
a given position and with a forced null vertical speed at the end of
the trajectory with the constraint that P should belong tho the regressed
hyperplane (middle) and without this constraint, on the basis of minimum
square error(bottom).

In the first case, we assume that, during the execution of a

motion, a displacement among desired and effective position

is detected; in the latter, we assume that the final point has

changed during the execution of the motion. In both cases

we request that any replan does not change the past history
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of the motion, while it intervenes on the remaining (future)

trajectory to compensate for the variations. At time τ1 the

variable is found the state to be Ỹ error
τ1

, that can be different

from Ỹ (τ1), while the desired final state is Ỹf , that can be

different from Ỹ (1). The correction in the parameter vector

P , as following from the definition of P in the equation 7,

is:

∆PT = [∆Ỹi(τ1) ∆Ỹf ] [Φ(τ1) Φ(1)]
† (10)

where the ∆ indicates a deviation of the variable from the

one associated to the original trajectory. Also in this case,

the correction forces P to lie on the hyperplane defined by

the equation 7.

H. The Importance of Segmentation

It is important to address the importance of the segmen-

tation in this system. Computing an unique P for all the

process we lose several desiderable characteristics:

• the possibility to define different scaling in time for

different part of the process;

• the possibility to manage the transition between phases

with a state machine, allowing complex interaction with

the environment and the possibility to change the order

in which the phases are presented;

• The possibility to specify different constraints for dif-

ferent situations occouring during the task.

It is important to define in advance a segmentation criterion

that is possible to apply in real time. This can be defined

explicitly on the basis of the knowledge of the task and of

the contour conditions implied by the breakpoints chosen.

Segmentation in a complex task involving a large number of

variables can be obtained using machine learning techniques

such as neural networks to model the transition between

phases as presented in [20]. This would work, again, in case

the user provides explicitly a segmentation of the sample

to be used to train the neural networks. An optimized

segmentation for this method is still object of research.

III. EXPERIMENTAL RESULTS

A. Test Task

In order to test the system we set up a simplified version

of ball juggling in virtual reality inspired by [4], involving

the catch and the toss of one ball with the right hand.

The examples have been produced recording the vertical

and horizontal component of the hand position of a user

interacting with the virtual environment. We used a Polhemus

electromagnetic tracker sampled at 200 Hz. The set up of the

system is shown in figure 5 The user was asked to perform

the following exercise:

• toss a ball towards the left portion of the screen;

• reach a given point at the bottom of the screen with the

hand;

• catch the ball

• return to the starting point and start again

The task takes place totally in virtual reality. The interaction

is based only on hand tracking: the toss is triggered when

vertical hand acceleration reaches a given negative threshold

Fig. 5. The system used during the experiment.The user stands in front
of a monitor where a a virtual hand and a virtual ball are shown. The user
controls the position of the virtual hand moving a Polhemus R© tracker.

and the ball detaches with the speed of the hand at the end

of the toss. This requirement to perform a trajectory starting

with an acceleration an ending in a deceleration fast enough

to hit the threshold when the speed is the desired one for the

toss. A catch is triggered when the virtual hand touches the

virtual ball and hence the catch can be considered a dynamic

reaching task. We segmented the task in four phases: tossing,

reaching the bottom of the screen, catch, and return. The

phase transition has been based on the toss for the tossing

phase, the position reached for the going-down and the return

phases, and the successful ball catch for the catch phase.

In this case, the test can not be reduced to a two points

reaching problem [10] since in this case complex start/end

point boundary values alter the dynamics of the gesture.

In this example the conditions Qi determining the behavior

are the initial and the final position of the hand. In the case

of the catch the final position should be computed to assure

that the hand reaches the ball.

We used random targets based on the distribution of user

movements for the reaching tasks (going-down and return),

the catch phase was driven setting as constraint to reach the

ball. The Ti times were generated on the basis of a uniform

distribution covering the range of times observed during the

training. The toss phase was driven in the same way, but

applying later a condition of vertical speed equal to zero (as

explained in II-F) this was performed by the user to invert

the motion.

B. Data Regression

To regress the parameters of the model we proceed ac-

tually performing two regressions. First we regress a vector

P from every trajectory associated to a phase, computing

the coefficients (i.e. the first two) representing the linear

translation analytically to achieve the desired position at

the beginning and at the end of the trajectory, we compute

the expansion of the residuals minimizing the square error.

Finally we regress the Hyperplanes using the obtained P
vectors as samples representing the relation between the

408



conditions Qi and the movement Y . Since the harmonic

decomposition of the residual can be made arbitrary precise

increasing the number of components N we concentrate then

in an estimation of the goodness of the linear regression. We

check, at least within the context of the presented case study,

the hypothesis that a linear model can describe the relation

between a human movement and its boundary conditions.

C. Performace

To train the system described in the previous section we

produced dataset for each phase composed from 40 to 60

different examples containing each from 150 to 200 different

sample points. Assuming that the deviation from the plane

can be represented with a Gaussian noise, a linear regression

analysis was carried out on the full dataset. A Lilliefor

Normality test on the regression residuals confirmed the

hypothesis of ‘Gaussian Like’.

The trained system is capable of performing the exercise

steadily: this requires to perform reaching tasks between

different points keeping the trajectory shape and to repro-

duce the trajectory dynamics producing the tosses. Besides

reproducing the task we are interest into doing in a style

that is similar to the oneperformed by the human. To asses

this an analysis of the 95% confidence interval on regression

parameters was performed by partitioning samples in differ-

ent test and to assess the relevance of the parameters and of

the model hyperplanes. In the case of relevant parameters,

we found a very high stability of the F-test conducted on

regression results that confirmed the accuracy of estimation.

A jacknife method applied as cross validation check shown

that, the variance in the estimated planes parameters was one

or two order of magnitude less than the estimated values.

IV. CONCLUSIONS

We presented a programming by demonstration frame-

work. We based our method on the construction of a model

for a complex task. We described how the system can give

a great flexibility in modeling motor tasks involving the

interaction with the environment and we shown an example

of how the system can work. We have described a trajectory

correction procedure that can be used explained how the

model can compensate tracking error and react to target

changes. Experimental statistical analyses have demonstrated

the effectiveness of the approach.

Future Work

The modeling of human movement through linear func-

tions between a task phase contour conditions and trajectory

parameters should be formally tested on a wider set of cases

on different tasks and sampling different users). Even if

the decomposition in translation and harmonics is general

enough to reproduce human movements, we are planning to

test different Φ vectors, mainly to explore the descriptive

properties of the vector P about the studied movement. An-

other interesting improvement of the described system would

consist in the design of a method to obtain segmentation

(phase transition) rules from the examples.
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