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A flexible framework for mobile based haptic rendering
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Abstract—The present paper discusses a framework for
creating flexible rehabilitation exercises on a mobile haptic
interface. The approach is based on a combination of high
level interactive scripting with a flexible real-time haptic control
algorithm. The control problem has been decomposed into
primitives such that the real-time issues are managed at low
level on the mobile system, while a high level control can
interact with the user through powerful and flexible scripting.
The control architecture is flexible enough to operate haptic
rendering on wireless mobile devices. Overall the system allows
to create a large variety of rehabilitation exercises that can all
share the same methodology for their parametrization and as-
sessment. The rationale of the design and the implementation of
the different control level will be provided. Design experiments,
based on a rehabilitation game scenario will also be discussed.

I. INTRODUCTION

There is a large interest in designing new haptically
enabled applications in particular for the domains of reha-
bilitation robotics and education. These applications allow
to support the cognitive and sensorimotor rehabilitation of
subjects. Unfortunately the cost of the devices and the
complexity of the haptic rendering aspects have so far
posed limitations in the features of the applications. Due
to their therapeutic nature these applications need also to
be integrated with performance measures that can be used
along with the training protocols, or on-line for adapting the
complexity of the task.

In the rehabilitation task, as in many general haptic
applications, there are two main approaches for providing
feedback to the user while performing a task: virtual fixtures
and shared controls [13]. Virtual fixtures [4] are haptic ren-
dering features that allow to specify geometrical constraints
for subject motions. An exercise based on virtual fixtures
allows to impose specific paths of motion that are considered
beneficial for the rehabilitation task.

Shared control is another complementary feature that
allows to manage the amount of help provided by the robotic
system to the subject while executing a task [7]. The role of
shared control for rehabilitation is generally investigated by
Carmichael et al. [2] modeling requirements and associated
assistance during the execution of a task.

While these concepts are well known to experts in robotics
and haptics, there is a need for mapping them to the
rehabilitation protocols, and in general to the design of a
high level application for exercising a subject. This paper
introduces a haptic rendering approach and a representation
of geometrical features for designing a variety of haptic
exercises. The paper addresses the problem of designing this
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Fig. 1: MOTORE: MObile roboT for upper limb neurOrtho
REhabilitation. The picture shows the rehabilitation tool with
the two handles designed for different kind of patients.

kind of rehabilitation exercises by introducing a framework
for designing, testing and executing these applications. The
framework is described from the low level control up to the
high level scenario editor analyzing the primitive features
that provide the trade-off between behavior flexibility and
the easiness of design for non-experts.

Several types of interfaces are employed in rehabilitation,
from desktop systems to exoskeleton [8], but there is also a
new class of systems based on mobile platforms with haptic
feedback generated through the wheels as proposed by the
authors [1], [12]. MOTORE, the reference device of this
paper, depicted in Figure 1. It is worth mentioning that some
of the design element proposed by this work can be applied
to passive mobile platforms [6], [11], [10].

The remaining of the paper is organized as follow. The
following section discusses the high-level overview of the
framework in Section III. Section IV introduces the low-level
control scheme. Then Section V introduces the representa-
tion of trajectories. Examples of scenarios are presented in
Section VI ad finally Section VII provides a brief evaluation
of the force rendering.

II. HIGH LEVEL DESIGN

The framework proposed by the paper takes a global
approach for dealing with exercises in training protocols, as
depicted in Fig. 2. The system manages a set of exercises
called scenarios, that are parametric with respect to execution
condition, e.g. subject handiness, and to complexity and
duration. Therapists manage the activation of these scenarios
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based on the training protocol and direct assessment of the
subjects’ performance.

Scenarios are composed by three elements: visual and
haptic entities, behavior of the scenario, and performance
parameters. The entities are expressed by a XML repre-
sentation and manipulated using a visual Editor depicted in
Figure 3. Behavior is represented in JavaScript allowing easy
editing and flexibility. Finally the performance indicators
are a means used for sharing the assessment of exercise
performance across different executions: they comprise the
amount of energy exchanged by the device and the user, the
statistics about the forces and errors in trajectory, the amount
of help received by the device, in addition to other measures
that are specific of the given scenario.

The key contribution of the paper is the design of the
entities employed in the haptic rendering and they are
discussed in a bottom up approach in the following sections.

III. CONTROL AND RENDERING ALGORITHMS

The device control structure has been already accurately
discussed in our previous works, [12], [1], here, after a short
description of the basic control loops, we will focus on the
haptic rendering mechanism and on the control modalities
provided by the device.

A. Motion Control

The platform movement is achieved by mean of three
identical DC-brushed motors which allow the rotation and
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the movement in any direction thanks to their configuration
on the device chassis. Each motor rotation is measured by an
optical encoders (2000 counts per revolution) that, given the
robot wheel radius ensure an overall position sensitivity less
than 1pm per count. The absolute position of the device (wr.t
a fixed reference frame) is achieved by fusing the odometry
information with the position measurement coming from an
optical pen embedded inside the robot itself.

The close-loop control system is composed by three nested
loops. At the inner level the current control loop manages
the PWM duty cycle of the drivers to control the currents
flowing within the motors. The current regulation is closed on
the velocity controller that enables the platform to follow the
commanded desired velocities. This loop has a base rate of
1kHz. Finally, the slowest loop (50 Hz refresh rate) provides
position estimation correction to the odometry estimation by
means of an ad hoc Extended Kalman Filter.

The choice of using an internal velocity controller instead
of a force controller does allow us to implement safety issues
directly at very low-level since the wheels velocity signals
are available, accurate and stable in all the control phases.
Conversely, position information (required by an impedance
controller) is not so accurate due to wheel slipping in
combination with the latency of the fusing algorithm.

B. Force Rendering

Traditional haptic rendering algorithms rely on the
impedance control. Impedance controllers require an internal
force rendering subsystem. The distance between the device
position (5) and a desired estimated position (P_’;) provides
the input to generate a proportional force to be rendered
(F;, = —Z(ﬁ — P_’;)), where Z is the control impedance.
Conversely, admittance controllers use the force read by a
force sensor (F_:q) to determine the device linear velocity (V_';,)
through integration (V_" = Fi@/(Ms +b))! using an apparent
mass (M) and a nominal viscosity (D).

Even being most suited for an admittance controller,
we rearranged the force rendering algorithm to implement
impedance and admittance controllers that may operate si-
multaneously on different and orthogonal axes:

Vd_:i = (k1(P. — D)+ koFs) - d
Vi = (Fs-d)/(Ms +b) ()
| Vi= Ve, +(1-)Vg,

where d represents any control direction, v € [0, 1] is the
control selector that decides if the direction d is subject to
impedance or admittance control type and k1, k2 are control
gains to modulate the filter input signals. If v = 0 the control
over direction d_: reduces to an admittance controller, whereas
if v = 1, the control over the same direction resembles an
impedance controller. It is easy to verify, that steady state
equilibrium (Vi,z' = 0) along direction d. is achieved when
F_fg-tiz —kl/kg(l:_); — 5) In this case we have an equivalent
impedance of Z = ki /ko.

'Here “s” denotes the Laplace variable.
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Fig. 4: Control law representation. The control algorithm
generates a reference velocity along the orthogonal direction
using an impedance like control law and a reference velocity
along the parallel direction using an admittance control law.

C. Haptic Rendering

The haptic rendering has been organized to support dif-
ferent control modalities, such as:

1) free move: the device appears as a viscous virtual mass

2) point attraction/potential fields: the device is attracted
to a point in space

3) trajectory constraint: the device is constrained to move
over a given path

The first two behaviors may be implemented by setting
the selectors v equal to 0 and 1, respectively. The last
behavior, i.e. the trajectory constraint, is achieved selecting
two orthogonal directions (d_”,dl) and mixing the control
modes (v € (0,1)) in order to obtain an admittance profile
along the trajectory and an impedance one in the orthogonal
direction, see Figure 4.

To implement such a profile and to decouple between low-
level (embedded) control and high-level (application driven)
control, we decided that each motion stroke is associated
to a trajectory whose geometry is determined through a
spline, and the associated admittance and impedance profile
is passed as a parameter.

D. Haptic Protocol

The decoupling between the low-level control, and high-
level control is achieved at spline description level. The low-
level control operates at 1kHz frequency, while the high-level
control may operate at any frequency (even asynchronously).

When the high-level control wishes to program a certain
profile, it sends to the low-level control a tentative packet
containing the following information:

Spline geometry
Admittance/Impedance properties
Operating modes 3 parameters
Guards 4 parameters

Spline geometry: whenever each new candidate spline
is proposed to the low-level control, the device checks the
spline and re-adapts it in order to match the spline boundary
conditions with the actual platform’s position. If required this
operation may also imply a re-sizing of the spline geometry.

2 parameters
4 parameters
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Eventually, in the case of failure on the spline curvature, the
low-level controller can refuse to accept the spline.

Admittance/Impedance properties: these parameters
control the mass, the viscosity and the stiffness values as
defined in (1). To avoid real-time exceptions, only a finite
number of values are available.

Operating and modes: these parameters defines how the
device behaves at the beginning, during the execution and
at the end of the rehabilitation exercise. The switch between
these phases is guided through a set of time/length guards
described below. In combination with these guards, the low-
level controller decides which feedback policy to use to help
the user following the given trajectory.

Guards: four different types of guards have been imple-
mented in the low-level controller. These guards monitors the
time spent by the user in each phase of the spline tracking, as
well as the overall length of the performed trajectory with
respect to the length of the reference. In particular, start,
length and running guards switch the device from one of the
active driving modes (v # 0) to the passive mode (y = 0),
where the proxy point is moved at constant speed (see sec.
IV-C for details).

To complete the protocol, the low-level controller regularly
informs the high-level control about relevant performance
data including: percentage of spline completion, elapsed
spline time, statistical data on force, motion and work
performed by both the user and the machine.

Using such information the high-level controller may
decide when to download a new candidate spline to the low-
level controller.

This protocol ensures that in each condition the low-
level controller is intrinsically stable with clearly defined
instructions of what to perform even in the absence of
surveillance from the high-level control. Missing or delayed
information coming from the high-level control will result in
decreasing the quality of servicing, but never falls in unstable
conditions.

IV. TRAJECTORY CONSTRAINT

In order to implement the control strategy previously
described, some trajectories have been defined. Further, in
order to assure the system portability as well as its simple
use, these trajectories have been coded into the device itself,
i.e. in the DSP flash memory. This section explains how the
base elements have been designed and how a generic path
can be obtained using such base elements.

A. Spline Definition

The device embeds 20 base elements which are combined
together to set up the desired geometry which will be used
to constrain the user movement according to the control law
given in (1). Each base element represents a planar curve in
the bi-dimensional zy-plane and it is defined by a sequence
of eight control points (z;,y;). Such points are interpolated
by a cubic spline with given end conditions. In particular,
we set a starting and an ending direction as end conditions
for the interpolating process. In this way we can assure
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Fig. 5: Bi-dimensional spline example. (a) points definition,
(b) curve parameter definition.

>

Fig. 6: Base elements definition examples. The figure shows
four kinds of base elements: a straight line, three arches and
a ’sine” like element. Each element has been designed in the
[0,1] range along the z-axis.

the starting and the ending tangent curve which allows to
concatenate the base elements without shape discontinuities.
The interpolation process employs cubic splines of class C'3
[3] which assures the continuity of the trajectory as well as
the continuity of its first and second derivative.

The interpolation process can be formalized of follow:
given n control points (z;,4;) and the curve parameter u,
we are looking for the cubic spline which interpolates the
given control points according with the starting and ending
slope:

p(u) = (px(u), py(u)) 2)

where p,(u) and p, (u) are one dimensional spline which in-
terpolates (u;, x;) and (u;,y;), respectively and i = 1,2...n.

Whichever bi-dimensional shape can be defined consid-
ering the sequence of control points, and defining between
each pair of points two cubic curves being function of u that
varies from O to 1 between the control points, see Figure 5(b):

{ T = ag, + by, u; + czu? +dyud (3)

Y = ay, + by,u; + cy,uf + dy,u

Repeating the approach for each pair of control points,
leads to the desired cubic spline, see Figure 5(a).

In MOTORE, each base element has been defined span-
ning eight control points in the plane constrained by the [0, 1]
range along the z-axis and it consists in simple shape which
has been oriented along the z-axis, see Figure 6. Defining
the appropriate functions =z = f(u) and y = ¢(u), we
obtained the eight control points and hence the polynomial
coefficients, obtained according with (2), has been stored in
the DSP (64 floats for each base element). During the design
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phase, the use of cuspid or high-curvature strokes has been
avoided in order to provide good references to MOTORE,
i.e. smooth curve without discontinuities in the velocity (first
derivative) and acceleration profile (second derivative).

B. Trajectory definition

Point-based trajectories allow to scale, translate and rotate
the stored geometries with low computational cost, and hence
it is possible to fit with the task requirements adjusting in
real-time the base elements previously defined. In particular,
based on the actual device position, the desired final position,
and the chosen base element, the low-level control calculates
in real-time the new geometry using the original spline
coefficients, a roto-translation transformation matrix and a
scaling factor. Moreover an additional safety check has to
be performed, while manipulating the base elements. Scaling
the base elements requires that the minimum curvature of
the trajectory is not going below a given threshold that has
been carefully defined by experimental trials with the device.
Hence, the low-level control checks in real-time if the desired
destination is feasible based on the actual device position and
the chosen base element.

The base elements can also be combined each other
in order to obtain arbitrary and more complex trajectories
(Figure 8). In MOTORE, an internal buffer stores the next
trajectory to be accomplished as soon as the device reaches
the end of the current trajectory. In this way the device
assures the continuity of the exercise even in presence of
communication isues with the hosting PC. While connecting
the base elements, the continuity of the trajectory in the
contact points between two adjacent geometries has to be
explicitly assured. This check is performed before sending
the request for new trajectory to the device and it is done by
the trajectory editor witch runs on the host computer.

C. Proxy Algorithm

In order to implement the control law defined in (1) and
set-up the rehabilitation protocol, it is required to know
which is the trajectory point closest to the device (the
proxy point). It is also required to track this point on
the trajectory itself while the device moves according to
the pre-programmed movement law or due to the patient
driving forces. To track the proxy point a longitudinal curve
coordinate (I € [0,8]) is defined. The integer part of [
identifies the spline stroke to be consider (the sub-set of
spline to be selected), whereas the decimal part of ! identify
the w value which is used according with (3) to obtain the
proxy point.

The proxy point is evaluated in real-time using a 2D
Newthon-Raphson method on the spline curve. The result
is used as attractive point in the impedance filter along the
orthogonal direction. The updating law for the longitudinal
coordinate [ is defined by the following smoothed gradient
algorithm:

Ik +1)=1k)+a

- T -
[ d(k) ] V() @

(k)| IV (k)
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Fig. 7: Graphical representation of the proxy algorithm. D
is the device posmon vector, P is the spline position vector,

= P — D, V is the local curve gradient whereas n is
the minimal distant between the device position and the
trajectory.

where, according with Figure 7, d has been defined as the
distant vector between the device position and the proxy
point, V is the local curve gradient and o € [0,1] is the
tracking speed gain. This latter gain (o) is chosen as a trade-
off between performance and possible stability issues that
could be associated to curvature changes. The local curve
gradient v is symbolically computed differentiating (3) as

follow:
- by, + 2c5,u; + 3dy u

= byz + 2¢y,u; + 3dylu ©)

Figure 7 shows on a generic trajectory the curve coordinate
evolution over the time. The orange point is the curve
coordinate at (k)-instant and the green point represents the
expected curve coordinate at (k + 1)-instant. [(k) comes
from the previous proxy algorithm step, whereas I(k + 1)
is obtained projecting on the curve the device position along
the minimal distant direction.

In some specific guidance conditions (see “Operating and
guidance mode” in section III-D), the curve coordinate [ may
also be assigned with a prefixed update law which drives the
device to follow the spline at constant speed (v):

v

E+1)=1lk)+ =—— 6

Wk +1) =1(k) S (6)

This proximity algorithm is affected by cases in which

the closest point to MOTORE is not unique, as when the

device is in the center of a circular trajectory. The possible

instability caused by multiple solution can be solved by

carefully designing the trajectory and by limiting the distance
to the reference trajectory.

V. SCENARIOS

The framework adopts a combination of declarative and
behavioral structures for supporting a large set of scenarios,
from basic repetitions of trajectories to complex games
involving haptic tasks. In particular, in this paper we high-
light two typical task in rehabilitation settings: trajectory
following and reaching. The trajectory following scenario is
actually a family of scenarios in which different trajectories
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posizione: giri: monese:

Fig. 8: Left: trajectory following task in the pursuit configu-
ration, where the subject drives the red car and the opponent
has the blue one. Right: reaching scenario in which the
subject virtual hand has to collect coins that are placed in a
radial way.

can be experienced, with similar shapes and different sizes
and placements in the workspace. A variant of this scenario
has been designed to make the task more engaging and for
this reason the subject has the duty of trying to reach an
opponent car as shown in Figure 8 (left). The opponent car
behavior is designed to limit the maximum speed of the
subject and give some chances to the subject.

A typical reaching task is managed by the scenario in
Figure 8 (right) in which the user cursor is represented by
a hand that has to collect coins. The coins are placed in a
radial form and the motion from the center to each coin is
constrained by a straight path.

These scenarios are characterized by the combination of
purely visual features, namely sprites, and visual-haptic enti-
ties that correspond to exercise trajectories. All these entities
can be manipulated in the visual editor that supports the
direct testing and debugging of the scenario with the haptic
interface. The trajectories in particular can be manipulated by
modifying the control points, by changing the basic spline,
and the editor supports the enforcement of specific design
requirements like maximum forces, curvature, or adjacency
between segments. The editor is also characterized by a
representation of the device workspace allowing to verify
in advance mobility problems.

In terms of implementation, scenarios run inside a custom
C++ based Qt (Digia) application extended with JavaScript
for the behavior of the scenarios. This choice has been done
for keeping under control the update rate and the perfor-
mance of the connection with the device. This system could
be enhanced by moving the user interface and application
logic to HTMLS provided that performance criteria are met.

VI. EVALUATION

The real-time proxy point estimation and the driving capa-
bility of the device have been tested on several experimental
tests with patients. In the following two results concerning
a trajectory following exercise are presented.

During the exercise it has been asked to the patient to
follow the given reference trajectory in counter clock direc-
tion, see Figure 9. The reference trajectory is represented in
solid red line, with red star as the connection points between
the elementary splines. The green circles represent device
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Fig. 9: Trajectory following example. The figure shows the
reference trajectory, the actual device position and the force
exerted by the patient.
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Fig. 10: Force feedback provided during the trajectory fol-
lowing exercise. The reference trajectory is in red, device
forces are green arrows, the path, during two passages, is in
magenta, user force as blue circles.

positions while the blue arrows show the force applied by
the user on the robot handle.

Figure 10 is a detailed view of the previous trajectory
that shows the feedback provided to the user. The sequence
of device positions are represented with magenta points,
whereas the corresponding blue circles are the magnitude
of the forces exerted by the user (equivalent to the arrow
magnitude of Figure 9). The green arrows represent the
force feedback provided to the user as driving aid by the
impedance control which is strictly related with the proxy
point estimation, as explained in sec. III-D. The result proves
the effectiveness of the proxy algorithm that in real-time is
able to follow the closest point to the device. This assure the
right computation of the normal and parallel direction which
are the requirements for the stability of the implemented
control law.

VII. CONCLUSIONS

The approach proposed in this paper allows to design
different types of exercise scenarios while taking into ac-
count the peculiarities of the haptic rendering required by
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a mobile wireless haptic interface. There are several di-
rections of improvement as the integrated presentation of
exercise performance and haptic oriented enhancements to
the editing environment. The system is currently tested in
real rehabilitation settings and the effectiveness of the design
will be discussed in future work. The paper discussed only
motor based scenarios but others involving both cognitive
and motor tasks are being tested.
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