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Abstract— Wearable motion tracking systems have gained
large popularity in the last decades because of their effectiveness
in many fields, from performance assessment to human-robot
interaction. Among all the approaches, those based on inertial
sensors have been widely explored. Since inertial sensors are
affected by measurements drift, they need to be aided by
other sensors, thus requiring sensor measurements to be fused.
The most used sensor fusion techniques are based on Kalman
filter. In particular, the Extended Kalman Filter (EKF) and the
Unscented Kalman Filter (UKF) are used because of the non
linearity characterizing most of the models. They often aim at
reconstructing human motion by estimating limbs orientation,
involving human’s kinematics to constrain relative motion of
the limbs. These models often neglect part of the degrees of
freedom (DoFs) that characterize human upper limbs, especially
when modeling humerus motion with respect to the chest. In
this paper we present a novel 7 DoFs model which represents
a trade-off between modeling accuracy and complexity for the
human upper limb. In particular, we model the human shoulder
girdle taking into account also the humerus head’s elevation
and the retraction due to the scapula’s and the clavicle’s
motions. The model exploits inertial sensors measurements by
means of an Unscented Kalman filter to reconstruct human
movements. The system performance is validated firstly against
a reconstruction based on an optical tracking system. Secondly,
the 5 DoFs model extracted form the 7 DoFs one was checked
to have state of the art performance and used to estimate
the improvement of position estimation that are obtained by
extending the model to 7 DoFs.

I. INTRODUCTION

Human motion reconstruction has been widely studied in
the last decades because of its importance in several fields,
from human performance assessment to health and rehabili-
tation applications. Traditional approaches to motion capture
are based on optical methods: analysis of videotapes, marker-
based motion capture of body landmarks and, recently, mark-
erless techniques are example of such approaches. Although
these systems can be very accurate in position estimation,
all of them are very sensitive to lighting conditions and
occlusions. Wearable sensors provide a smart alternative to
optical systems, as they do not suffer from lighting and
occlusions. Moreover, they do not require specific labora-
tory setups, thus allowing for being used outdoors. MEMS
(microelectromechanical system) based inertial motion units
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(IMU) are specifically successful in the wearable domain,
as they are simple, unobtrusive, and self-contained. In their
simplest form, they are composed of a gyroscope and an
accelerometer (both biaxial or triaxial). Although IMUs are
not afflicted by the problems of optical systems, they suffer
from measurement drift phenomena, that make impossible
to reconstruct motion by time integration of angular velocity
and linear acceleration. To solve this issue, additional sensors
(e.g. magnetometers, optical sensors, ultrawide band) that
do not suffer from drift were added. Therefore, most of the
motion reconstruction methods use sensor fusion techniques
that allow also to take into account the kinematic constraints
on the human limbs.

In this paper we focus on IMUs enhanced by triaxial
magnetometers, that is the most common combination of
sensors for IMU-based motion capture. This work focuses
on a new model for reconstructing the upper limb motion.
In particular, we propose a model of the shoulder kinematics
that takes into account the humerus’ head elevation and
profusion (both motions that do affect humerus orientation)
in order to improve position estimation and track more com-
plex movements. Therefore the proposed kinematics’ model
has 7 DoFs, and it is an extension of the 5 DoFs models
that are the most complex that we found in literature. Most
of the systems that are available in literature validate their
results against optical, marker-based techniques of motion
reconstruction. We adopt the same technique as we will
consider optical tracking motion reconstruction as ground
truth and we will compare our results against it. Moreover,
we implemented the corresponding 5 DoFs version of our
model to assess the improvements that are obtained including
further 2 DoFs. In summary, the main contributions of this
work are: the introduction of a novel kinematic model for
the human upper limb which better represents the shoulder
girdle complex structure; the estimation of all the joint
variables (angles, velocities and accelerations) for the body
parts considered; a system performance assessment both
for joint angles and wrist position, preserving joint angles
estimation accuracy and improving position estimation w.r.t.
the equivalent 5 DoFs model.

The paper is organized as follows. Section II provides an
overview of the state of the art related to IMU-based motion
reconstruction. Section III describes the methodology that
we used, in particular the kinematic model and the state and
measurements models. Section IV reports the experiments
that we carried out to validate our model along with their
results. Section V discusses the comparison of the results
that we obtained with the proposed approach and other



state of the art approaches. Finally, the paper is closed by
conclusions.

II. BACKGROUND

Works on human motion tracking can be grouped into two
categories, according to their implementation of kinematic
constraints:

1) Separate estimation: each limb’s orientation is esti-
mated as if it were disconnected from the others, after
that kinematic constraints are eventually imposed to
refine the estimation.

2) Joint estimation: human kinematics’ constraints are
embedded in a model that takes into account several
(even all) the limbs at the same time.

There are several examples belonging to the first group.
Yun and Bachmann [7] propose a double layer filtering
approach. One layer is composed of the QUEST algorithm
[5] that exploits acceleration and Earth’s magnetic field data
to estimate the quaternion representing limb orientation.
The second layer is composed of an EKF that fuses the
QUEST estimation with an orientation update based on the
limb’s angular velocity. The model used has 3 DoFs, for
its validation each DoF estimation was compared to tilt
table measurements. Zhou and Hu [10] present an orientation
estimator based on Kalman filter. The filter estimation is the
input of a kinematic model of human upper limbs (i.e. arm
and forearm) to reconstruct the elbow and wrist positions. In
this work the shoulder is assumed to be fixed. Zhang and Wu
[9] use quaternions to represent the upper limbs orientation.
It is estimated through a particle filter (PF) that implements
the geometrical constraints of the elbow joint. Only one
degree of freedom between upper arm ad forearm is consid-
ered, obtaining less than 15◦ error in the angle estimation.
Roetemberg et al. [3] propose a full body tracking system
that is able to estimate 23 human limbs’ orientations by inte-
grating gyroscopes and accelerometers data. To correct their
estimation, they also consider biomechanical characteristics
of the human body. No performance assessment is given. Not
considering the kinematics’ constraints or separating them
from the joint angles estimation may lead respectively to
estimation distortions in the first case or to the development
of so complex algorithms that were implemented for only 1
DoF.

The second possible approach consists on estimating joint
variables of an upper limb kinematic model taken at the
same time. Human limbs are considered to belong to a
kinematic chain which models the geometrical constraints
of the human skeleton. By exploiting this approach, Zhang
et al. [8] obtained a 5 DoFs model for the human upper
limb The human shoulder is modeled as a spherical joint,
while the forearm motion with respect to the upper arm is
modeled through two rotational joints. An UKF is used to
estimate joints angles and angular velocities. The authors
obtain angles error of less than 2.86◦ for the upper arm
and less than 12.60◦ for the forearm. This method does not
show any estimation distortion if compared to the indepen-
dent orientation estimation method. A similar approach is

proposed by El-Gohary and McNames [1]. They present a 5
DoFs model for the human upper limbs, taking into account
also angular accelerations. The estimation is done through
an UKF filter, fusing on accelerometers and gyroscopes data.
The obtained results are compared to optical tracking based
ground truth data. The comparison shows an average root
mean square error (RMSE) lower than 8◦ and a cross corre-
lation coefficient r ≥ 0.95 for the joint angles. Performance
assessment for complex movements (more complex than
involving 1 DoF at a time) is not reported. In particular,
the estimation of the shoulder rotation angle and position
assessments are not reported. Position accuracy is instead
used by Mihelj [2] to validate his system. In this work the
author presents an upper limb orientation estimation system.
Each limb orientation is represented by a quaternion that is
estimated taking into account the kinematic structure of the
human skeleton. In this case also the wrist DoFs are included.
The system performance is assessed both using an optical
tracking system and an haptic interface to measure the wrist
position. The system shows good performance both in the
orientation and position tracking, but it does not calculate
joint variables.

In contrast to the works described, this paper presents a
high degrees of freedom model, which models the complex
articulation of the human shoulder girdle with more accuracy.
Joints variables (angles, velocities and accelerations) are
estimated by fusing measurements from 3-axis gyroscopes,
accelerometers and magnetometers through the use of an
UKF. Differently from the listed works no assumptions are
made on the motions to be tracked and all the degrees of
freedom of the upper limb are estimated and reported as
well as wrist position.

III. METHODOLOGY

Our model belongs to the joint estimation group. We
exploited a kinematic model of the upper limbs to fuse
joint angles estimation and IMUs measurements in an UKF,
that has joint angles and their derivatives as state. Given
the nonlinearity of some of the models we chose UKF as
a trade-off between EKF and PF. Therefore we need three
models for the joint angles estimation. The first is the model
of upper limb kinematics, described in section III-A. The
second, described in section III-B, provides the equations that
model the state evolution over time, whereas the third model,
that is shown in section III-C and is based on upper limbs
kinematics, allow to write sensor measurements as function
of the UKF state vector.

A. Kinematics Model
Several models can be identified for the upper limb. We

follow the standard proposed by the International Society
of Biomechanics (ISB) [6] with some simplifications. In
particular we neglect few of the DoFs mentioned by ISB
to limit the sensors’ number and the algorithm complexity.
We model upper limbs by taking the chest as root. We
then suppose the clavicle to be linked to the chest by
two revolute joints that model clavicle elevation/depression



Frame ai αi di ϑi Joint
1 0 π/2 0 ϑ1 Scapula Protraction
2 lcl π/2 0 ϑ2 Scapula Elevation
3 0 π/2 0 ϑ3 Shoulder Abduction
4 0 π/2 0 ϑ4 − π/2 Shoulder Rotation
5 lua 0 0 ϑ5 + π/2 Shoulder Flexion
6 0 π/2 0 ϑ6 + π/2 Elbow Flexion
7 0 0 lfa ϑ7 Elbow Rotation

TABLE I
DH TABLE AND JOINT CORRESPONDENCE, lcl , lua AND lfa ARE

CLAVICLE, UPPER ARM AND FOREARM LENGTH RESPECTIVELY.

and profusion/retraction. Then the humerus is supposed
to have three rotational DoFs w.r.t. clavicle, i.e. shoulder
abduction/adduction, internal rotation, and flexion/extension.
Finally the forearm is supposed to have 2 rotational DoFs
w.r.t. upper arm, respectively elbow flexion/extension and
forearm pronation/supination.

We use the Denavit-Hartenberg convention to analytically
write the kinematic chain, that we refer to as DH chain.
According to this convention, a root frame τ0 and one frame
τi for each degree of freedom are introduced. Some of these
frames are fixed to human limbs. In particular τ0 is fixed
w.r.t. the chest, τ3 is fixed w.r.t. the humerus, and τ5 is fixed
w.r.t. the forearm. Each frame has its zi axis aligned to the
i+1-th joint axis. Frames τi−1 and τi are related each other
by the T

i−1
i ∈ R4×4 homogeneous matrix:

T
i−1
i =

�
R

i−1
i r

i−1
i

01,3 1

�
(1)

=





cϑi −sϑicαi sϑisαi aicϑi

sϑi cϑicαi −cϑisαi aisϑi

0 sαi cαi di

0 0 0 1



 (2)

where rotation matrix R
i−1
i allows to align frames τi−1 and

τi axes, whereas r
i−1
i is the τi’s origin position in τi−1. The

expanded expression of T i−1
i is obtained when applying DH

convention. In this latter matrix cψ and sψ are respectively
cos(ψ) and sin(ψ). This matrix depends on four parameters,
namely ai, αi, di, ϑi. The parameter di represents translation
between frames τi−1 and τi along zi−1 axis, ϑi the rotation
around zi−1 axis necessary to align xi−1 and xi, ai is the
translation along the xi axis and, αi the rotation around xi

axis to align zi−1 with zi. Table I summarizes the parameters
that define the kinematic chain of our kinematic model.

Three 3-axis inertial sensors, measuring angular velocity,
linear acceleration and earth magnetic field, are used to re-
construct motion. Sensors frames’ positions and orientations
w.r.t. τ0 are obtained by selecting a parent frame in the
DH chain and then calculating the (constant) homogeneous
matrix that relates the sensor’s frame to the parent frame.
The resulting kinematic structure for the left arm is shown
in Figure 1.
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Fig. 1. Kinematic model of the left arm shown from behind. The model
shows the reference frame in the thorax and the 7 moving frames of the
kinematic model. As from the DH notation each frame Ti is expressed as
a fixed transformations from Ti−1 plus a rotation qi along the axis Ti.

B. System Dynamics Model
Here we define the state space model of the UKF. To

obtain a greater accuracy we include in the state model joint
angles, velocities and accelerations, obtaining for each joint:

xi =
�
ϑi, ϑ̇i, ϑ̈i

�T
i = 1, . . . , 7. (3)

Given the generic formulation of the state space model, with
additive noise for discrete systems:

x(k + 1) = f(x(k)) + νk (4)

where f(·) is a nonlinear function and νk is the process
Gaussian white noise, defining Ts the system sample time,
the state model equations are:

ϑi(k + 1) = ϑi(k) + Tsϑ̇i(k) +
1
2T

2
s (ϑ̈i(k) + νk)

ϑ̇i(k + 1) = ϑ̇i(k) + Ts(ϑ̈i(k) + νk)
ϑ̈i(k + 1) = ϑ̈i(k) + νk

(5)

where the joint acceleration dynamic is modeled as a random
walk process. The dynamic model considered leads to a
linear state space representation where the dynamic matrix
and the covariance matrix of the process for every joint are:

Ai =




1 Ts

T 2
s
2

0 1 Ts

0 0 1



 Qi =




T 2
s
2
Ts

1




�

T 2
s
2 Ts 1

�

C. Measurements Model
The measurements model describes how the state is related

to the observed data. The general form of this model for a
discrete system with additive noise is:

y(k) = h(x(k)) + �k (6)

where h(·) is a nonlinear function and �k is the white
Gaussian noise on the measurements. In our case every
sensor measures angular velocity (ωs

s), linear acceleration
(ẍs

s) and magnetic field (ms
s) in its own frame. Considering



the s
th IMU attached to the p

th (parent) frame we obtain
the following measurements model:

ω
s
s = R

s
p(ω

p
p + ϑ̇p+1z0)

ẍ
s
s = R

s
pẍ

p
p + S(ω̇s

s)r
s
p,s + S(ωs

s)
2
r
s
p,s +R

s
0g

0

m
s
s = R

s
0m

0
(7)

where R
2
p is the rotation matrix from parent frame to sensor

frame, S(v) is the skew-symmetric matrix from vector v, Rs
0

is the rotation matrix from sensor to global frame, g0 and m
0

are gravity and Earth magnetic field in the chest root frame,
z0 is the (0, 0, 1)T vector, and r

s
p,s provides the position of

sensor frame relative to parent in sensor frame. Equations in
7 are obtained according to Newton-Euler’s formulation.

For those reasons we decided to use a UKF to estimate
the system state.

D. Sensors Placement and Calibration
The three IMUs’ placements aims at minimizing the

muscle extrusive effect during movements. The first sensor
was placed on the scapula beside the Angulus Acromialis,
the second one on the lateral side of the upper arm above
the elbow and the third was placed on the lateral side of
the forearm a few centimeters far from the wrist. Sensor
orientation is computed by means of an optimization process
based on a simple calibration procedure: the subject is asked
to hold his arm along the body (n-pose) and then perform
a 90◦ shoulder abduction (t-pose). Sensors’ orientations
w.r.t. their parents are defined by three Euler angles, that
are computed in this phase as solution of an optimization
problem: the sought Euler’s angles are the γ, β, φ angles that
minimize the difference between the accelerometers’ gravity
measurements and the gravity vector in τ0. Therefore, for
each sensor, said g

i the gravity vector in τi and τs the frame
attached to the s-th sensor, the following problem is solved:

min
γ,β,φ

�Rs
0(γ, β, φ)g

0 − ẍ
s
s� (8)

since in static condition ẍ
s
s = g

s.
Sensors translation parameters of the homogeneous matrix

T
p
s are manually measured and provided as parameters. The

same stands for the limbs lengths (lcl, lua and lfa). The same
calibration process was carried out for both the 5 DoFs and
7 DoFs models. The position and orientation of the sensors
w.r.t. the model kinematic is represented in Figure 2

IV. RESULTS

A. Experimental Setup
To assess our system performance we set up a twofold vali-

dation. Firstly joint angles estimation and landmarks position
estimation performed by our 7 DoFs model is compared to
an optical motion capture system that is considered as ground
truth. Secondly the same comparison is carried out against
an equivalent 5 DoFs model whose performance is at the
state of the art. This is done to evaluate the accuracy of our
approach in reconstructing kinematics, and to assess how
much our approach allows to improve position estimation
with respect to an equivalent 5 DoFs model that perform

Fig. 2. Kinematic model of the arm, with the scapula, upper arm and
lower arm shown as blue ellipsoids. The three sensor frames are shown
using the color convention red-green-blue for the x-y-z axis. The figure
shows also the variance of some of the joints depicted as a cylinder with a
radius proportional to the variance.

Fig. 3. Experimental setup for synchronized IMUs and optical motion
capture. Sensor frame with offset roff from actual sensor frame origin and
marker center in the magnified area.

at least as good as state of the art models. The Vicon
motion capture system was used to gather ground truth data.
Seven high resolution cameras (Vicon, MX+ 20) capture
the subject motion. Nine reflective markers were placed
on specific subject’s body anatomical landmarks: clavicle;
acromion; ulna trochlear notch and humerus throchlea axis;
two markers to determine scaphoid-pisiform axis; one marker
for each of the 3 IMU. Three 9-axis Invensense (Invensense,
Borregas Ave Sunnyvale, CA, USA) MPU9150 IMUs were
worn by the subject as described in section Methods III-
D. Sensors data were sent via Bluetooth (version 2.0) to a
central computing units at a rate of 100 Hz. We enabled
the embedded algorithms from Invensense to filter magnetic
disturbances. The model for kinematic reconstruction is
implemented in Matlab Simulink R� and it is run at 100 Hz

frequency. The experimental setup is shown in Figure 3.

At the beginning of the experiment, the calibration proce-
dure described in III-D was carried out. The participant was
then asked to perform the following functional movements,
exploring the possible joints space: elbow flexion/extension;
forearm pronation/supination; shoulder abduction/adduction;
shoulder rotation; shoulder flexion/extension; scapula antepo-
sition/retroposition; scapula elevation/depression.



B. Estimation Results
1) Joint angles comparison: Joint angles ϑ̃i were calcu-

lated from the optical data with a method adjusted from
[4] to have ground truth data to be compared against our
models estimations ϑi. Models were tested on a trial that
is comparable for length and joint speed to the validation
found in [1]. Figures 4, 5, and 6 show ϑi against ϑ̃i for the
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Fig. 4. Comparison of optical (ϑ̃i) and model based (ϑi) estimation for
the scapular joints.

parts of the whole trial involving the functional movement
that mostly stresses a given DoF.
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Fig. 5. Comparison of optical (ϑ̃i) and model based (ϑi) estimation for
the shoulder joints.

15 20 25 30 35 40
0

50

100

150
Elbow Flexion Angle

Time [s]

A
n
g
le

 [
d
e
g
]

 

 

Optical
Estimated
Error

42 44 46 48 50 52 54 56
−100

−50

0

50
Elbow Rotation Angle

Time [s]

A
n
g
le

 [
d
e
g
]

 

 

Optical
Estimated
Error

Fig. 6. Comparison of optical (ϑ̃i) and model based (ϑi) estimation for
the elbow joints.

Models were assessed taking into account both the RMSE
in joint angles ϑi estimation, namely Eϑi,k, and the cross-
correlation coefficient of ϑi and ϑ̃i, called Cϑi,k where k

identifies the model.

Variable Eϑi,5 Eϑi,7 Cϑi,5 Cϑi,7

ϑ1 - 6.19 - 0.65
ϑ2 - 3.43 - 0.74
ϑ3 7.03 8.19 0.95 0.94
ϑ4 6.03 10.68 0.87 0.63
ϑ5 4.95 8.79 0.99 0.97
ϑ6 9.93 5.00 0.98 0.99
ϑ7 11.29 9.61 0.85 0.85
Average 7.85 7.41 0.93 0.82

TABLE II
RESULTS OF ESTIMATION. RMSES [DEG] AND CORRELATION ARE

REPORTED FOR BOTH 5 DOFS AND 7 DOFS MODELS.

Variable EPi,5 EPi,7 CPi,5 CPi,7

Shoulder 36.9 34.1 0.97 0.98
IMU arm 76.8 66.5 0.99 0.99
Elbow 70.6 65.5 0.98 0.98
IMU forearm 106.6 103.6 0.98 0.98
Average 72.7 67.4 0.98 0.98

TABLE III
RESULTS OF ESTIMATION. RMSES [MM] AND CORRELATION ARE

REPORTED FOR BOTH 5 DOFS AND 7 DOFS MODELS.

We compared the trajectories of the optical markers on
subject’s shoulder, elbow and IMUs on upper arm and
forearm with the ones estimated, for the same points, by
our 7 DoFs model and by the equivalent 5 DoFs model. It is
to be noted that the offset roff between actual IMUs centers
and the corresponding markers, shown in Figure 3, is taken
into account in the model parameters. Figures 7, 8, 9 and 10
show the comparison among position estimations performed
by the 5 DoFs model, the 7 DoFs model, and the optical
tracking system.
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Fig. 7. Comparison of optical position and estimated positions (with 5 and
7 DoFs models) for upper arm sensor along each axis.

As for the joint angles we calculated, for each considered
point, both the position error and the correlation of 5 DoFs
and 7 DoFs with respect to the optical capture output. The
comparison of the results is shown in table III.

V. DISCUSSION

The results of the experiment show that the system is ca-
pable to track joint angles with good results when compared



0 20 40 60 80 100 120 140 160 180

0

0.2

0.4

0.6

Forearm Sensor Position Comparison

P
o
si

tio
n
 x

 [
m

]

 

 

Optical
5DoFs
7DoFs

0 20 40 60 80 100 120 140 160 180

−0.4

−0.2

0

0.2

P
o
si

tio
n

 y
 [

m
]

 

 

Optical
5DoFs
7DoFs

0 20 40 60 80 100 120 140 160 180

−0.4

−0.2

0

0.2

Time [s]

P
o

si
tio

n
 z

 [
m

]

 

 

Optical
5DoFs
7DoFs

Fig. 8. Comparison of optical position and estimated positions (with 5 and
7 DoFs models) for forearm sensor along each axis.
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Fig. 9. Comparison of optical position and estimated positions (with 5 and
7 DoFs models) for subject’s shoulder along each axis.
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Fig. 10. Comparison of optical position and estimated positions (with 5
and 7 DoFs models) for subject’s elbow along each axis.

to state of the art models. As a first achievement we can
state that our model estimates joint angles slightly better
than what reported by [1] for what regards joint angles that
were considered in their models, and that the goodness of
the estimation of clavicle angles is comparable to shoulder
rotation and forearm pronation/supination. Although errors
in optical estimation of joint angles and its alignment with
our model estimation may have raised questions about the
validation, the high values of correlation between model
output and the optical estimation allow to conclude for the
validity of the estimation.

Position estimation shows a slight improvement when
using the 7 DoFs model with respect to the 5 DoFs model for
what regards both error and correlation of model estimation

with respect to ground truth. The reason for the slightness
of the improvement can be found in the position estimation
comparison figures (more evident in Figure 9, but it can be
found as well looking at the others). Although the 7Dofs
model allows to better track clavicle motion, error in clavicle
joint angles estimation cause part of this improvement to
be lost by chance when comparing optical data against the
constant estimation of 5DoF model. Therefore 7 DoFs model
has still room for improvement in better clavicle IMU sensor
placing and in model parameters estimation, whereas 5 DoFs
model has smaller room for improvement and its shoulder
position estimation is, of course, at its best.

As a final remark it is worth noting that the present system
already works much faster than real-time in its Matlab-
Simulink R� implementation with recorded data. A C++
version has already been developed and preliminary tests
show that it can run real-time on a Raspberry PI R� board
computer, thus being suitable for portable applications.

VI. CONCLUSION

We presented a novel 7 DoFs model that allows to re-
construct human upper limbs kinematics in terms of 2 DoFs
motion of clavicle, 3 DoFs motion of the shoulder and 2
DoFs motion of the forearm with respect to the arm. The
comparison against models that we cited in section II allowed
to state that our 7 DoFs joint angle estimation is slightly
better than the state of the art. Position estimation is better
as well, therefore we conclude that, despite its simplicity,
this model allows to track clavicle motion with sufficient
precision, being a good starting point to tackle the problem
of modeling shoulder motion.
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