Computational Techniques in Natural Motion Analysis and Reconstruction Application

Motion Tracking for portable biomechanic measures

Lorenzo Peppoloni, Alessandro Filippeschi, Emanuele Ruffaldi

I.peppoloni@sssup.it

The ERGANE Project

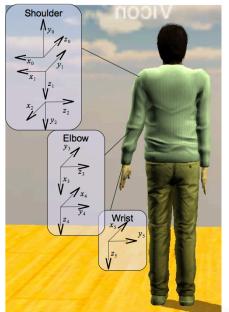
- Ecological detection of work related pathologies
 - Workers in unstructured environments:
 - Construction
 - Craftsmanship
 - Farmers

The ERGANE Project

- Pathologies caused by repetitive actions with dangerous postures and loads: high impact on health and economy
- System for tracking and analysis of workers in ecological conditions
- Motion capture aided by wearable technologies
- Grasp force estimation by surface EMG matrix

MoCap: background

- Wearable sensors based motion reconstruction
 - Inertial sensor units
 - Models of human kinematics
 - Sensor fusion



MoCap: Kinematics

Model of the human upper limb

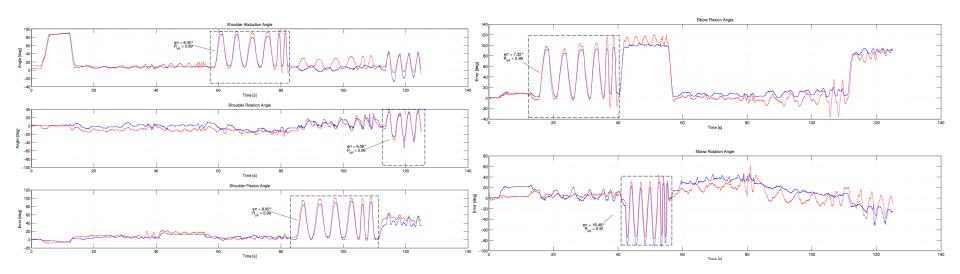
Frame	a_i	$lpha_i$	d_{i}	ϑ_i
1	0	$\pi/2$	0	$artheta_1$
2	0	$\pi/2$	0	$\vartheta_2 - \pi/2$
3	l_{ua}	0	0	$\vartheta_3 + \pi/2$
4	0	$\pi/2$	0	$\vartheta_4 + \pi/2$
5	0	0	l_{fa}	$artheta_5$

MoCap: UKF

Process model

$$\vartheta_{i}(k+1) = \vartheta_{i}(k) + T_{s}\dot{\vartheta}_{i}(k) + \frac{1}{2}T_{s}^{2}(\ddot{\vartheta}_{i}(k) + \nu_{k})
\dot{\vartheta}_{i}(k+1) = \dot{\vartheta}_{i}(k) + T_{s}(\ddot{\vartheta}_{i}(k) + \nu_{k})
\ddot{\vartheta}_{i}(k+1) = \ddot{\vartheta}_{i}(k) + \nu_{k}$$

Measurement model


$$\begin{aligned} \omega_{s}^{s} &= R_{p}^{s}(\omega_{p}^{p} + \dot{\vartheta}_{p+1}z_{0}) \\ \ddot{x}_{s}^{s} &= R_{p}^{s}\ddot{x}_{p}^{p} + S(\dot{\omega}_{s}^{s})r_{p,s}^{s} + S(\omega_{s}^{s})^{2}r_{p,s}^{s} + R_{0}^{s}g^{0} \\ m_{s}^{s} &= R_{0}^{s}m^{0} \end{aligned}$$

Joint variables estimation

RMSE and Correlation

Joint	$E_{\vartheta_i} [deg]$	$C_{artheta_i}$
$\overline{artheta_1}$	7.03	0.95
$artheta_2$	6.03	0.87
$artheta_3$	4.95	0.99
$artheta_4$	9.93	0.98
$artheta_5$	11.29	0.85

$$C_{\vartheta_i} = \frac{\sum_{j=1}^{N} (\vartheta_i - \bar{\vartheta}_i)(\tilde{\vartheta}_i - \bar{\tilde{\vartheta}}_i)}{\sum_{N} (\vartheta_i - \bar{\vartheta}_i)^2 \sum_{j=1}^{N} (\tilde{\vartheta}_i - \bar{\tilde{\vartheta}}_i)^2}$$

$$E_{\vartheta_i} = \frac{1}{N} \sqrt{\sum_{j=1}^{N} (\vartheta_i - \tilde{\vartheta}_i)^2}$$



ERGANE: Directions

- Refinement of online tracking
 - 7 DOF (submitted)
 - Position calibration (submitted)
 - Improved performance
- Integration of EMG
- Test on workers

MoCap: Further Implementations

