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Abstract— We propose a novel biologically plausible actor-

critic algorithm using policy gradients in order to achieve

practical, model-free reinforcement learning. It does not rely

on backpropagation and is the first neural actor-critic relying

only on locally available information. We show it has an ad-

vantage over pure policy gradients methods for motor learning

performance in the polecart problem. We are also able to

closely simulate the dopaminergic signaling patterns in rats

when confronted with a two cue problem, showing that local,

connectionist models can effectively model the functioning of

the intrinsic reward system.

I. INTRODUCTION

Many psychological and neurophysiological studies imply
that motor learning is dictated by adaptation to an ever fluc-
tuating internal reward signal [1], which is is often assumed
to be encoded by the dopaminergic system. The same line of
thought dictates that the different brain functions are formed
in our conscious or unconscious attempt to maximize the
received reward from the environment. This has led to the
development of a formal machine learning framework known
as reinforcement learning. It is the most general form of
machine learning, in the sense that the other major machine
learning tasks, like unsupervised and supervised learning,
can in general be formulated into a equivalent reinforcement
learning problem. The loss function to be minimized in these
tasks is simply used to define the reward function, with
smaller loss giving higher reward.

Reinforcement learning is also a very difficult problem.
As we have no error gradient information, we will have to
estimate it locally. The question of how the animal brain is
able to accomplish this remains unanswered, but is the key
to unlocking the motor learning potential it possesses and be
able to design self-learning system able to perform effective
movements in very complex environments.

The reinforcement learning problem can be described
as follows: an agent takes actions based on what it can
observe about the world in order to achieve an objective,
which is encoded in a reward function. Formally, this is
most often defined within the context of Markov decision
processes (MDPs) and partially observable Markov decision
processes (POMDPs). In these frameworks, we define a state
s, observation o, action a, transition probabilities to a new
state t(s0 | s, a) and a reward function r(s, a).

In problems of the discounted reward type, we seek to
find parameters ✓ for a probabilistic parameterized policy
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where � is a discount factor used to penalize distant rewards
and to limit the convolution in the continuous case.

Unlike supervised learning, which requires the desired
output, reinforcement learning requires only a reward signal
given at some unknown time after the action in order to
effectively learn. This means that we do not have access
to the gradient of our reward function, @r

@a

, and that we
will instead have to estimate the gradient implicitly. This
requires a certain degree of exploration, which can be either
a search for a global minima, as in dynamic programming-
based algorithms with exploration, or a search for a local
minima, an approach usually referred to as policy gradient
methods.

The structure of this paper is as follows: in the next section
we will overview the capacity and limitation of state of the
art in reinforcement learning with the aim to provide a good
background and motivation for our work. In section III, we
will go into details of the learning algorithm. In section IV
we will experimentally test the algorithm for reinforcement
learning and compare the internal reinforcement signals
against neurophysiological experiments.

II. STATE OF THE ART IN REINFORCEMENT LEARNING

Reinforcement learning is one of the most complex ma-
chine learning tasks. Several different approaches have been
made and they vary widely in their methodology and as-
sumptions. However, most of these lay in either of two
directions: temporal difference (TD)[2] and policy gradient
(PG) methods. TD methods, which notably includes Q-
learning [3] and SARSA[4], are closely related to dynamic
programming and resulted in many early successes in dis-
crete action spaces. They have also resulted in a comprehen-
sive theoretical framework, which is often referenced to in
neuroscientific and psychological contexts. Policy gradient
methods, on the other hand, are more naturally adapted
to continuous action spaces. They optimize their policy by
directly estimating the policy gradient on the reward function
through small stochastic variations in the action, and use this
gradient estimate to perform gradient ascent. This second
approach is more closely related to the backpropagation used
in supervised learning.

Another related concept is actor-critic (AC) architectures,
which involves the creation of an additional, intrinsic reward
separate from the received, or extrinsic, reward. The AC
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methods were originally derived from the TD error concept,
originating from the TD learning framework, but can be
readily applied also to policy gradient methods.

A. Discrete TD learning

Early reinforcement learning solutions were developed for
small, discrete state spaces and inspired by the Bellman
equation’s ability to find globally optimal solutions using
a state-dependent future value estimate. This analogue to
the Bellman equation was called temporal difference and
introduced the TD error. The small state spaces allow for
effective application of dynamic programming in estimating
the temporal difference error and the small action spaces
allow for an iteration over all possible actions, for a total
of S ⇥ A values to be stored. These simple problem types
made it possible to use tables, which have long dominated
the field for this reason. The two most common TD-learning
methods are SARSA and Q-learning. SARSA iteratively
develops better policies and discounted reward estimates.
Q-learning estimates the best policy while exploring with
another, usually predefined, exploration policy.

In the case of a POMDP we would need to replace s with
the distribution of states for an exact solution.

B. TD learning in continuous spaces

When tackling MDPs in larger and continuous state and
actions spaces, these spaces are often discretized. This can
be effective up to medium-sized problems, but for other
tasks the complexities quickly get out of hand. Problem size
in reinforcement learning long limited the applicability of
reinforcement learning in practice. A common idea for solv-
ing continuous or large problems has been to use function
approximators to estimate the Q-value. In pure Q-learning,
we still need to take the maximum Q over all possible actions
at each step, which is computationally prohibitive in large
action spaces. For SARSA, we can develop an on-policy
reward estimate Q, but the problem of actually improving a
policy using Q remains unsolved. Thus, once we leave the
assumption of small, discrete action spaces the problem of
finding a policy that increases E[Q(s, a)] might be no easier
than the original RL problem we started with.

C. Policy gradients

A more direct approach for solving reinforcement learning
problems in continuous action spaces is known as policy
gradients. The REINFORCE algorithm [5] introduced a way
to calculate the policy gradient of the reward function using
small, stochastic variations in the policy. A small step can
be taken in the policy parameter space to ascend the reward
function using ths gradient, which is calculated using the
correlation between the stochastic variations in action and
the reward.

The convergence of policy gradient algorithms is generally
slow, but it will converge to a local optimum. A local
maximum is indeed the best we can hope for in practical
large-scale problems, as finding the global solution of a
POMDP is at least PSPACE-complete [6].

An important parameter for the convergence rate is the
baseline b(s). Although REINFORCE will converge for any
choice of baseline, the rate at which it does so varies
substantially. An analysis of the signal-to-noise ratio of the
estimate suggest that using the expected future reward as a
baseline produces the optimal ratio [7] [8].

D. Actor-critic methods

Actor-critic algorithms form a generalized framework
clearly separating the parametrized policy, knows as the actor
within the actor-critic framework, from the parametrized
discounted reward estimate, known as the critic. Although
the actor-critic architecture suggests more complex combi-
nations with value estimation, any reinforcement learning
algorithm can be deconstructed into actor-critic pairs for easy
comparison

An open question is how to most effectively parametrize
the policy and reward estimate. Many different types of
actors and critics have been studied, from moving averages
and tables to backpropagation networks and spiking neurons.

For a brief overview of current work in actor-critic algo-
rithms we suggest the review by Grondman et al. [8].

An overview of the actor-critic architecture can be seen in
figure 1.

Environment

Critic Actor

Actions

Reward

Observations

Intrinsic reward

Observations

Fig. 1: The actor-critic architecture. The critic receives the
extrinsic reward and calculates and produces a separate
intrinsic reward, from which the actor updates its parameters.

E. Localized neural models

Neural network models in machine learning have predomi-
nantly been relying on backpropagation for over two decades
for many good reasons. The existence of a gradient is an
intuitive feature with nice convergence properties. The output
error can propagate through any depth in order to optimize
the network as a whole. Consequently, one would expect to
find a similar mechanism in the main source of inspiration
to all neural networks: the animal neuron. However, we
have yet to identify a biologically plausible such mechanism.
This has in fact been one of the most difficult questions for
computational neuroscience to answer: how does the brain
learn without backpropagation signals? Most realistic models
leave the more difficult parts of learning open and focus
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on solely unsupervised mechanism, such as spike-timing
dependent plasticity, long term potentiation and long-term
depression. It is clear that these learning forms are unlikely
to produce the full spectrum of complex and goal-oriented
animal behaviour that we are familiar with.

Lately, there has been an increase in the amount of work
in biological reinforcement learning in particular. Notably
Legenstein et al. [9] proposed a neural model using policy
gradients to learn using reinforcement signals as a model
for human plasticity. They achieved interesting results in
simulating several different types of learning using simple
neurons with REINFORCE.

Although policy gradients can learn any POMDP, policy
gradient updates are likely too slow to organize the whole
learning process. Actor-critic system are more practical can-
didates, but most parameterized critics need to propagate
error gradients and this puts the biological plausibility into
question.

F. Claims of importance of our work

We introduce eligibility traces for supervised learning and
a biologically plausible algorithm for efficient supervised
learning. These concepts are able to replicate in-vivo mea-
surements of dopaminergic neurons estimating discounted
future reward. We rethink the actor-critic framework by
removing the Bellman updates and argue that significant
benefits can be derived simply from combining supervised
learning with reinforcement learning at different time scales.
We strengthen our argument by showing benefits in conver-
gence time and stability in the pole cart problem. This is
the first neural actor-critic algorithm using only biologically
realistic, local information for both the actor and the critic.

III. THE CAC ALGORITHM

We propose an effective connectionist actor-critic (CAC)
algorithm that learns using policy gradients and exclusively
local information for solving POMDP problems. This is
achieved with a policy gradient neural network and a
cascade-correlation type network interlinked in an actor-critic
structure. We present each part in the subsections below.

A. Traces for supervised learning

For supervised learning we can estimate the gradient on
the discounted reward by keeping two traces, e1 and e2:

e1(t+ 1) = �e1(t) + y(t)
@

@✓

y(t) (2)

e2(t+ 1) = �e2(t) +
@

@✓

y(t) (3)

where y is the output and ✓ any given parameter of our
estimating model. The resulting weight change with step size
✏ is calculated as:

�✓ = ✏ (e1(t)� re2(t)) (4)

This can easily be seen as we try to minimize the error e:

e =
X

i

infX

�t=0

h
(y(i)� r(t))2 ���t

i
(5)

where we use the notation t = i + �t. We calculate the
derivative of the error function:

@

@✓

e = 2
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which can finally be rewritten as
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(7)
The latter is a sum of two terms, which can be calculated

separately using eligibility traces and summed using eq. 4.

B. Neural cascades

The cascade-correlation algorithm has been around for
many years, but it has seen little practical use despite its
biological plausibility and fast convergence [10]. This is
mostly due to the success and fame of backpropagation
networks and their theoretically attractive promise of exact
calculation of the gradient through any network structure. In
practice, this propagated error signal is of dubious utility.
Deep architectures tend to worsen performance unless either
pre-trained in an unsupervised fashion or trained for very
long times. In a realistic neural motor learning system, we
would also value fast learning over effective use of the
network structure.

Backpropagation through time obviously suffers from re-
lated problems. In theory, it allows us to eventually propagate
information from any moment in the past, but suffers from
being attracted to poor local minima and vanishing gradients
that prevent practical retrieval of information from just a
couple of time steps back.

In contrast to these methods, cascade-correlation is a sim-
ple, naturally connectionist algorithm. Since backpropagation
in practice is unable to retain information for more than a
couple of time steps [11], the unsupevised method would be
roughly equivalent.

We combine traces with several modifications to the
cascade-correlation algorithm. The changes described below
enhance both the plausibility and practicality, while main-
taining or improving the generalization ability, of the original
model.

First, we use only sibling units in order to limit network
depth, although any combination of inputs to the neurons
could be used as an alternative using the same learning rules.
A detail overview of the difference between sibling units
and the descendant units of the original cascade correlation
algorithm can be found in Baluja et al. [12]. Further, we have
a preset size of the network and do not incrementally add
neurons. Overfitting can instead be more elegantly prevented
through ridge regression. We also do not freeze neurons, but
let the whole neuron chain adapt continuously. This has been
shown to result in roughly equivalent overall training time
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and brings advantages in minimizing the error on the training
set[13].

All experimental results in this paper make use of this new
algorithm, which we call the neural cascade algorithm.

1) Proposed biological mechanism: These traces can be
calculated locally. Cascade-correlation requires two opera-
tions in a biological model: regression of the error signal and
updating of the residual error. This could be implemented
by two neuron types: Neuron type 1 updates the residual
error by estimating the reward through linear regression using
inputs from surrounding neurons. Neuron type 2 is nonlinear
and uses observations from input neurons to estimate the
difference between the best local reward approximation from
neuron type 1 and the actual reward. We use eligibility
traces, but do not rely on Bellman-like updating of the error
estimation against its own estimate, which means we are in
agreement with the experimental results in Pan et al. [14].
Note that relying on the eligibility traces alone allows us
to learn an unbiased discounted reward estimate from each
observation in the POMDP setting without maintaining an
explicit belief state.

C. Reinforcement learning neuron

The role of our actor is to learn exact solutions on small
time scales that can be assumed to be sufficiently short to
guarantee enough samples for an accurate estimation of the
policy gradient. Our actor is a neural policy gradient model
that is similar to the model proposed by Legenstein et al.
[9], but it implements eligibility traces and uses the noise
to directly estimate the gradient. Using an eligibility trace
allows us to learn with delays in the feedback, i.e. when
both the action itself and the reward of an action might not
be visible to the critic until a few time steps later.

1) Algorithm: We use a standard artificial neuron
with a tangent sigmoid activation function. Exponentially
decaying eligibility traces have been widely used in the
policy gradient context and is equivalent to ascent on the
discounted future reward for REINFORCE [15]. We get
the following weight changes:

✓

elig

(t+ 1) = �e+ �

@

@✓

y(t) (8)

�✓(t) = ✏ [e(t) + �r

internal

(t)] (9)

where e(t) is the eligibility trace.
The policy gradient be estimated in any output neuron

and backpropagated through hidden neurons. Alternatively,
it can be re-estimated locally in the hidden neurons [5].
We choose the latter approach, as it is more realistic in
avoiding both backpropagation through time and the need to
identify output neurons. The expectation of this gradient is
identical to the backpropagated signal, as the hidden neurons
essentially performs hierarchical reinforcement learning with
local estimation of the gradient. We will be able to estimate
the gradient effectively even in recurrent networks without
using backpropagation.

D. Actor-critic structure

In temporal difference learning we replace the extrinsic
reward signal r

ext

given to the actor with the following
intrinsic reward r(t):

r(t) = r

ext

(t) + �r

est

(s(t))� r

est

(s(t� 1)) (10)

where r is the extrinsic reward and r

est

the state-dependent
discounted future reward estimate from the critic. In an
POMDP, this estimate is simply calculated as above, but with
the observation as an intermediate step between state and
reward estimate.

The TD-error term (eq. 10) does not bias the actor if the
critic and actor use identical eligibility traces, as noted by
Kimura and Kabayashi [15]. However, we would indeed like
to bias the actor towards taking actions that provide a higher
average reward in longer time scales than those its short
eligibility trace takes into consideration. By changing the
critics � value the, the actor will instead start ascend these
long-term reward gradients.

The role of our critic is to move as much as possible of
the learning task into faster supervised learning tasks. This
is especially important for longer reward delays, as time
scales involved makes each sample much more precious.
Reinforcement learning will perform the learning in the
shorter term, covering primarily the delay from action to
observable change in state. Our algorithm is valid even if
the state is not observable on the short term, while it works
under an MDP approximation in the longer time scales.
This relaxation of the problem formulation greatly reduces
the credit assignment problem and allows us to perform
effective motor learning practically impossible with policy
gradients alone. The drawback is that direct action-reward
pairs over long time scales cannot be learnt if the actions
do not result in an observable change within the actor’s
shorter learning scale. This is a very reasonable limitation
in the motor learning context and is also not a very strict
limitation in general, given the amble possibilities to extend
the observation space through recurrent connections and
long-term memory.

Note that the argument presented here is superficially
similar to but fundamentally different from the variance
explanation in Konda et al.[16]. We are not dealing with
MDPs, but with POMDPs that can be approximated by
MDPs over larger time scales and this can be exploited by
limiting strict POMDP assumptions to the time scales when
they are needed and by adding a critic to the larger time
scales. In a diametrically opposite approach, we also assume
the actor to be the faster of the two updates.

E. Biological motivation

Our critic model supports both the reward modulation hy-
pothesis of dopamine and several superficially contradictory
results mentioned by Berridge [17]. Assuming dopaminergic
neurons are only transmitters of the intrinsic reward, lack of
dopamine would prevent the actor from pursuing long term
rewards while still learning immediate rewards through direct
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reinforcement learning. As a consequence, learning of long-
term predictions still take place in the brain in the absence
of dopamine, but information about the benefits of future
rewards do not reach the actor neurons.

IV. EXPERIMENTAL EVALUATION

We provide two experments to validate our actor-critic
model from different perspectives. We would like to validate
both the practical value over simple policy gradients and the
agreement of the TD-error with neurophysiological results
on dopaminergic neurons in animals. Both experiments were
performed with an implementation of our CAC algorithm
written in C++ and made available on https://github.
com/eruffaldi/neuralcascade/.

A. Pole cart balancing

Our first experiment seeks to evaluate the learning rate
of the actor-critic algorithm compared to the regular policy
gradient updates. Supervised learning tries to estimate the
observation-reward mapping given the policy and relies on
the actor for sampling the best policy assuming the critics
estimation is accurate. Supervised learning can estimate this
correlation mapping quickly given a specific trajectory, as it
can calculate the derivative directly instead of approximating
it through correlations with a noisy output.

On the other hand, using a critic suffers from having a two-
step process first estimate the value function of the policy and
later perform gradient ascent instead of just performing direct
ascent on the reward estimate. Our hypothesis is therefore
that supervised learning with large traces in relation to the
actors traces, where the learning time of the actor is small
or negligible, will lead to faster learning measured in the
number of trials for an actor-critic structure. If they instead
learn on similar time scales, we hypothesize that this will
lead to slower learning due to the two different learning
phases needed. This mechanism counteracts the advantages
of the MDP relaxation if the difference in time scales is not
large enough.

We will test this on the classic pole cart balancing prob-
lem. We will repeat the experiment with different time steps,
where we define step as a simulation step in time, while
an epoch is the period from the start of the cart until the
pole balancing fails as the pole falls below our threshold
angle. According to our hypothesis,the actor will have more
samples per epoch to use for adaptation, an easier credit
assignment problem as we decrease the time step. On the
other hand, the complexity of the control problem as such
can be reasonably assumed to be largely independent of the
time resolution used, given that the time step is small enough
to allow efficient control. We therefore hypothesize that a
policy gradient algorithm will remain largely unaffected as
step size is decreased, while the actor-critic method described
will improve as we move a greater part of the problem into
its MDP-relaxed equivalent.

1) Experimental setup: In our pole cart problem, the pole
is randomly initiated for each epoch at an angle with an even
distribution in the interval [-1 1] degrees and the cart in the

interval [-0.8 0.8] meters. Initial velocity for the cart and pole
is intiated in the interval [-0.01 0.01] m/s. Inputs are the pole
position and velocity, while output is the acceleration of the
cart. A small amount of noise is added to the inputs to ensure
POMDP conditions on the short scale.

The epoch is a failure if the pole angle exceeds 36
degrees or if the cart moves more than 2.4 meters from
its original position. An epoch is a success if it manages
to balance the pole for more than 10 seconds. A trail is a
series of epochs training the same CAC network. A trial
is considered successful when algorithm succeeds in three
consecutive epochs. If more than 40.000 epochs passed
without convergence, the trial is assumed to be stuck in a
local minimum and rejected.

We keep the critic’s trace constant in time through all
experiments, while we optimize the actor’s trace in early
testing. In practice this results in traces that are close to
constant in time steps across the experiments.

B. Reinforcement signal

In this experiment we test the critic’s response to training
with cues and compare with the firing rates of dopaminergic
neurons as reported by Pan et al.[14]. Similarly to their
setup,we present two cues followed by a reward with proba-
bility 0.6. We give probability 0.2 for each of two alternative
scenarios: 1) omitting cue 2 but still giving reward and 2)
presenting both cues but omitting the reward. We compare
patterns early and late in the training. Early training and late
training are the same 100 and 400 trials, respectively, that
were used in their simulations.

The respective cues are given at 5 and 15 steps before the
reward, which is given after step 29. This roughly equates a
step with 1 second. We used a longer 100 step separation
between trials, compared to a pseudo-random 10 - 20 s
in Pan et al., in order to avoid contamination and produce
clearer results. Inputs to critic is a vector of length 4. We set
variables 1 and 2 to 1 when cue 1 and 2 is given, respectively.
Variable 3 is set to 1 immediately preceding and and variable
4 is set to 1 immediately after the delivery of reward. Each
input is then exposed to exponential decay of 0.02 per time
step.

We initialize our critic with random weights close to 0,
in order to remove the impact of the initialization noise in
early training results.

C. Results

The results in the pole cart balancing test can be seen in
figure 2. The CAC algorithm requires more epochs to learn
in trials with large time steps, which is a reasonable result
given the overhead of using two learning phases instead of
one. We can see rapid reduction in the number of epochs
required as we decrease the time step , which agrees with
our stated hypothesis. We also found an unexpected benefit
in stability; the CAC algorithm converged to good solutions
in all experiments, while we were unable to find a parameters
setting for the policy gradient that resulted in a convergence
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probability greater than about 0.5. This is possibly due to
the policy hitting a local minima or a plateau.

The imitation of the neural dopamine signal is found
in figure 3. Our simulation is in good agreement with the
results in rat neurons by Pan et al. [14]. A notable difference
is that neural cascades have a stronger response to cue 1
than cue 2 in early training, while the TD(�) simulation
of Pan et al. achieved the opposite result. Unfortunately,
the population recordings in-vivo are too noisy to establish
a clear relative size of the cues. Moreover, one should be
careful in interpreting early cue responses as they are also
dependent on the gradient descent strategy used, e.g. the use
of adaptive learning rates and information from the Hessian.
In contrast, late cue responses should be closer to a minima
and largely independent of the gradient descent method used.
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0

0.5

1

1.5

2

2.5
·104

6,101 5,854

2,662

19,437

8,451

905

Time step

Ep
oc

hs

PG CAC

Fig. 2: Average iterations over 20 successful trials. Failure
to reach the target 10 s in three consecutive epochs within
40.000 epochs led to rejection of the trial. The CAC algo-
rithm succeeded in all trials, while the direct policy gradient
failed in approximately half of the trials.

V. CONCLUSIONS

Our results prove that actor-critics can greatly reduce
overall policy gradient learning time. Using the MDP as-
sumptions seems to be the key in improving the learning
rate, while preserving the short-term POMDP assumptions
allows us to use outputs whose effects are not immediately
observable. This actor-critic relaxation of the POMDP as-
sumption could be the key to reach efficient reinforcement
learning for motor control tasks.

It is also likely that higher cognitive function can result
from similar learning mechanisms, as all hidden neurons
in the network estimate their reward gradient locally and
will perform hierarchical reinforcement learning. Thus, in
solving the motor learning problem we might also be able to
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(a) Early training, second cue given
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(b) Early training, second cue omitted
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(c) Late training, second cue given
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(d) Late training, second cue omitted

Fig. 3: Simulated conditioned responses to cues using our
critic network. Top two images is early training (100 trials)
with and without the seconds cue respectively. Bottom two
images is late training (400 trials). For details of this partic-
ular cue problem see Pan et al.

automatically tackle a range of increasingly abstract learning
tasks using the very same building blocks.

We can also conclude that it is the use of traces that is is
the essential factor in reaching agreement with extracellular
recordings, not the dynamic programming nature of TD-
learning. We have showed that the results of Pan et al. [14]
can be replicated in simulations using such connectionist
networks. We note that the local learning rules proposed
in this paper presents a plausible explanation of the role
dopamine in its mechanism, its purpose and is in agreement
with neurophysiological measurements of the resulting sig-
nal.

In summary, the CAC algorithm provides an effective
working hypothesis on mechanism of animal motor learning
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gradual shift in response latency from the time of the reward to
the time of the first cue. During this time, there is no response
time-locked to either the first cue or the reward, so that there is no
overlap in time between cue and reward responses. The pattern is
clearly different to that seen in DA cells (Fig. 4D).

In contrast, Figure 4C shows the result for ! ! 0.9, with " !
0.005. With these values, the prediction error signal output re-
produced key elements of the pattern seen during learning in our
DA cell recording experiments (Fig. 4D). In particular, there is a
clear time-locked response to the intermediate cue, and new re-
sponses appear at their final latency, rather than progressively
shifting in time toward the first cue. Early in training, newly
developed responses to cue 1 and to reward coexist, with
predicted-reward responses only disappearing with additional
training, just as seen in the cell data.

Examination of three-dimensional (3-D) plots of model per-
formance over a range of parameter settings (Fig. 5) showed that

high values of ! were the critical factor that
enabled the model to learn about the sig-
nificance of cues without gradual trial-by-
trial stepwise migration of responses from
rewards to cues. As ! was reduced below a
threshold level ("0.6 for the number of
time steps modeled here), step-wise mi-
gration of prediction error signals ap-
peared for all values of ". The setting for "
appeared less critical, only failing to pro-
duce learning at very high values, as has
been noted previously (Sutton and Barto,
1998; Suri, 2001). Otherwise, the value for
", given a suitable setting for !, deter-
mined the number of trials needed for
growth of the cue response and for aboli-
tion of the reward response and therefore
the number of trials over which these re-
sponses coexisted. In Figure 4C, the setting
for " has been chosen so that suppression
of responses to predicted rewards oc-
curred only after hundreds of trials, as seen
in the cell data.

The relationship between model and
cell data are further explored in Figure 6,
which compares model prediction errors
with DA cell activity when cue 2 was omit-
ted after training in the two-cue paradigm.
The model (Fig. 6A) generated small neg-
ative prediction errors when the expected
cue was omitted, replicating the fact that
only small inhibitions were seen in DA cell
recordings. This was expected because of
the limit placed on the possible range of
negative prediction errors. Of more inter-
est, this analysis also showed that omitting
the second cue in trials in the model re-
stored the amplitude of the prediction er-
ror response to the reward toward the level
seen when the reward was entirely unpre-
dicted by cues. This occurred in the model
despite the presence of a conditioned pre-
diction error response to that cue and was
the case both early in training, when re-
ward responses were only mildly sup-
pressed, and later, when reward responses

were abolished by the presence of preceding cue signals. How-
ever, later in training, the amplitude of the restoration was some-
what less. Thus, in the TD model, the second and seemingly
redundant cue develops a role in the prediction of reward. The
relevant cell population data from Figure 3 is shown in Figure 6B,
illustrating the similar restoration of responses and suggesting
differential amplitude of restoration depending on stage of
training.

Discussion
These results extend previous findings from rats that DA cells
respond to sensory cues predicting reward (Miller et al., 1981;
Kosobud et al., 1994; Kiyatkin and Rebec, 2001; Hyland et al.,
2002) and show for the first time that these are contingent on
cue–reward association and arise during acquisition of classically
conditioned behavior. We also noted significant depression of
DA cell activity at the time of omitted rewards, indicating that rat

Figure 3. Effect of training on responses of DA cells to reward delivery under different states of predictability. A, Data from
animals early (#6 blocks) in training. The top histograms and dot rasters show a single example cell (same cell as Fig. 2 A) in the
random-reward paradigm (left), cued-reward trials from within the omission paradigm (middle), and omit cue 2 trials of the
omission paradigm (right). Population histograms below the rasters were calculated by averaging 50 ms bin counts across all
individual histograms (n ! 6, 8, and 3, respectively) and converting to instantaneous frequency. Error bars represent SEM. B, Data
from animals that had been exposed to $10 blocks of conditioning (late training). Panel layout and labels as for A. Population
histograms were constructed from five, five, and four individual histograms, respectively. Horizontal calibration bar shows 0.5 s for
all panels except the example cell data in A (2 s). Asterisks show time at which cue 2 would normally occur (omit cue 2 trials).
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Fig. 4: Single neuron recordings in rats of the effect of
training on responses of dopamine neurons to reward delivery
in a two cue problem, as originally presented by Pan et al.
Top rows of each training stage is single neuron recordings,
while bottom row is population recordings. [14]
.

and higher mental functioning, as well as a practical and
effective framework for reinforcement learning in motor
control tasks.

VI. FUTURE DIRECTIONS

Many improvement are already planned on these local
learning algorithms. We estimate that further development
the critic will likely have the most profound effect on
increases of the learning rate. Stacked critics with different
traces could allow us to learn more effectively at several
different time scales at once. We will also attempt to utilize

unsupervised pre-training with eligibility traces, possibly
simultaneously with supervised and reinforcement training.

In terms of biological realism, we are working on equiv-
alent spiking models, but expect them to be too com-
putationally expensive for practical evaluation in realistic
robot tasks. Instead, we hope that experience from practical
reinforcement learning will continue give clues to and take
inspiration from biological neurons indirectly.

We are also looking at implementing well-known rehearsal
methods in order to stabilize learnt experience and simulate
dreaming, which could be a requirement for avoiding catas-
trophic forgetting in more complex learning tasks.
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