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Abstract— Wearable motion tracking systems represent a
breakthrough in ecological motion tracking. Their effectiveness
has been proved in many fields, from performance assessment
to human-robot interaction. Most of the approaches are based
on the exploitation of optimal probabilistic filtering of inertial
motion units (IMUs) signals, ranging from linear Kalman
Filters (KF) to Particle filters (PF). Since most of the models
are highly nonlinear, filters such as Extended Kalman Filter
(EKF) and Unscented Kalman Filter (UKF) are typically used.
These approaches cause all the variables of the models to be
correlated each other. Probabilistic Graphical Models (PGM)
are a framework for probabilistic reasoning that allows to
explicitly declare the actual dependencies among variables. In
this paper we propose a novel algorithm for motion tracking
with IMUs based on PGM. The model is compared to the state
of the art UKF algorithm in tracking the human upper limb.
The results show that the proposed approach perform a slightly
better compared to the UKF.

I. INTRODUCTION
Human motion tracking has been vastly studied in the

last decades for its applications that span from performance
assessment to human robot interaction. Traditionally motion
tracking is based on optical capture systems. Those systems
show a great degree of accuracy but suffer from occlusions
and are sensitive to changes in lighting conditions, moreover
their usually small workspace does not make them suitable
for outdoor tracking. These issues are overtaken by wearable
motion tracking systems. Among all the approaches those
based on IMUs have gained popularity in this research field
being self contained, and unobtrusive. The main drawback
of this approach is the impossibility of directly integrating
IMUs data because of drift. To overcome this problem several
filtering and sensor fusion techniques have been studied,
among all the most used techniques are based on Bayesian
filters. According to the complexity of the problem consid-
ered two different families of approaches can be identified,
the first comprises linear filters such as Kalman Filter (KF).
Those are used for example in the case of simpler models
which consider every limb independent from the others,
without taking into account kinematic constraints. Exploiting
this kind of approach Zhou in [12] uses a KF to correct
the gravity and Earth magnetic field estimation with IMUs
measurements and then uses them to estimate human limb
attitude. Considering only one Degree of Freedom (DoF)
for the arm the position error obtained is less then 1 cm,
although accuracy is sensitive to measurement accuracy and
physical dimensions of all corresponding segments. Roeten-
berg in [7] uses a KF to estimate and correct the orientation
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errors obtained integrating inertial measurements to track the
human full body. No accuracy or performance assessments
are provided by the authors. The second family of approaches
comprises the nonlinear Bayesian filters, such as Extended
Kalman Filter (EKF), Unscented Kalman Filter (UKF) and
Particle Filters (PF). Despite being more computationally
expensive, these algorithms give the possibility to deal with
more complex models integrating also kinematic constraints
among limbs. Using this kind of approach Yun and Bach-
mann in [10] estimate the quaternions representing limbs
orientation combining a QUEST algorithm [2], exploiting
acceleration and Earths magnetic field, with an EKF that
fuses the QUEST estimation with an orientation update based
on the limbs angular velocity. Their model has 3 DoFs, for
its validation each DoF estimation was compared to a tilt
table measurements. A model based on UKF is presented
by Gohary and McNames in [3]. The authors propose a
5 DoFs model for the human upper limb, estimating joint
angles, velocities and accelerations. A spherical joint is used
to model the human shoulder and two rotational joints to
model the elbow. The estimation is done through an UKF
filter, fusing accelerometers and gyroscopes data. Results
obtained show an average RMS error of less than 8° and
a cross correlation coefficient r ≥ 0.95 with the optical
system for the joint angles. A similar approach applied to a
more complex kinematic model is presented by the authors
in [6]. In this model the potentiality of the UKF are exploited
to estimate 7 DoFs, comprising scapula motions, for the
human upper limb. A different approach is presented by
Zhang in [11] where the quaternions representing the upper
limbs orientation are estimated through a PF, taking also
into account the geometrical constraints of the elbow joint.
Only one DoF between upper arm and forearm is considered,
obtaining less than 15° of error in the angle estimation.

A drawback of Kalman Filters is that each of the variables
involved in the models is potentially correlated to all the
others. Since both the state and measurements matrices
can be made of nonzero elements, it is possible for each
variable to have some correlation with each of the others.
The structure of the Kalman Filter indeed does not allow to
directly represent variables independence. From this point
of view, other probabilistic frameworks are more flexible
for representing variables relations. Probabilistic Graphical
Models (PGMs) provide such flexibility as they allow to
define explicitly which variables are related and which are
independent, thus making the estimation assumptions more
realistic. Graphical models have been used in the field of
motion tracking for both estimating human position and
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motion analysis. In [4] the body was modeled as a kinematic
chain and a 3D surface mesh and the system is represented
with a dynamic Bayesian network. This framework is applied
for reconstructing the body pose from a stream of monocular
depth images. The body configuration is inferred through
MAP inference. First the configuration at time t is generated
from configuration at time t− 1 through hill-climbing, then
the evidence is applied detecting body parts from the optical
stream, a set of correspondence between estimated and
detected body parts is generated. At this point the evidence
is iteratively propagated for every correspondence to find a
new body configuration. Lastly hill-climbing is applied again
to refine the estimation. It is to be noted that the inverse
kinematic of the model, to estimate body part positions, is
performed through MAP inference on a model linearized
using Unscented Transformation (UT). In [1] a Bayesian
Network was employed to fuse EMG biosignals with the
dynamic model of an exoskeleton to estimate the applying
torque of the human operator. Every variable is treated as a
Gaussian process, and the posterior probability of the human
applying torque is inferred from the network. As it can
be seen PGM are particularly suitable for human motion
analysis and for fusing information from a wide number of
different sources. Due to the graphical structure the topology
and the variable dependencies can be easily visualized and
the Bayesian reasoning can be simplified with respect to the
equivalent Kalman Filters.

In this work we propose a novel approach to motion
reconstruction based on PGM. The structure of the human
kinematics makes the PGM framework particularly suitable
for exploiting IMUs sensors measurements and we show
an example of how to apply PGM to human motion re-
construction. We indeed present two PGMs that aims at
reconstructing body pose and motion based on IMUs signals
and we choose two of them for the evaluation. We show
that these models perform slightly better than state of the art
Kalman Filters based models.

The paper is organized as follows. In section II is given a
detailed description of how the problem is modeled from a
kinematic and probabilistic view point. Section III describes
the experimental setup carried on to test our approach,
results are discussed in section V. Section VI concludes our
contributions and explains future works.

II. METHODS
A. Arm kinematics

The human upper limbs are represented as a 5 DoFs
kinematic chain rooted in the humerus head center with the
shoulder providing 3 rotational DoFs (it is modeled as a
spherical joint) and the elbow one flexion-extension DoF. The
fifth DoF is the forearm pronation-supination. In the motion
tracking field human motion has been often successfully ad-
dressed using techniques borrowed from robotic manipulator
theories. The human upper limb can be represented as a chain
of consecutive limbs parametrized using the DH convention.
According to this convention a first a frame i is attached to
each limb, each frame z axis is coincident with the i+1-th
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Fig. 1. Kinematic model for the human left arm using the DH convention.
The shoulder is modeled with a spherical joint and the elbow with two
rotational joints. Every joint frame is represented along with the sensors
frames.

joint axis. A 4 × 4 homogeneous matrix relates each frame
to the following one. The i-th homogeneous matrix depends
on four parameters, namely ai, αi, di, ϑi. The parameter
di represents translation between frames along zi−1 axis, ϑi
the rotation around zi−1 axis necessary to align xi−1 and xi,
ai is the translation along the xi axis and, αi the rotation
around xi axis to align zi−1 with zi. According to this the
transformation matrix between link i− 1 and link i is:

T i−1
i =


cϑi −sϑicαi sϑisαi aicϑi
sϑi cϑicαi −cϑisαi aisϑi
0 sαi cαi di
0 0 0 1

 (1)

where cψ and sψ are respectively cos(ψ) and sin(ψ).
According to this choice the kinematics can be represented
by a list of joints and their parents, sensors are placed as
ramifications. We follow the convention that a segment or
sensor s is attached to a parent reference frame p and it is
affected by the joint variables p + 1. Taking into account
the use of inertial sensors, measuring angular velocity (ω),
linear acceleration comprising the gravity vector (ẍ) and
Earth magnetic field (mi), the previous convention leads to
the following governing equations:

ωi = Rip(ωp + q̇p+1z0)
ω̇i = Rip(ω̇p − q̇p+1S(z0)ωp + q̈p+1z0)
ẍi = Ripẍp − S(rip,i)ω̇i + S(ωi)

2rip,i + gi
gi = Ripgp
mi = Ripmp

(2)

where we use the convention for vectors with pedex as the
entity, and the apex as the reference system. When the apex
is missing it is the same as the pedex: e.g. ωip is the angular
velocity of joint p expressed in reference system i. For the
transformations we use Rji to express the transformation
from a vector in reference system i to reference system
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j. In the case of a sensors the ẍs measure contains also a
local gravity contribution gi. We also remember the property
S(ω)2 = −S(ω)S(ω)T , where S(v) is the skew-matrix
obtained from vector v. The i − th joint variables are
expressed as qi, corresponding with ϑi in the DH convention,
q̇i and q̈i. The rip,i is obtained from Rpi t

p
i , where ti is the

translation component of the transformation from the i− th
DH matrix.

ti =

 ai
di sin(αi)
di cos(αi)

 (3)

xi = [qi, q̇i, q̈i]
T

i = 1, 2, . . . , n (4)

Accordingly we define

xab = [xTa . . . x
T
b ]T (5)

The equations 2 can be written by means of a general
recursive formulation. A variable xi is related to the parent
as:

xi = Aipxp + bi, (6)

hence

xi =

p∑
k=1

Aikbk + bi. (7)

For example in the case of ω we have Ai = Rip and bi =
q̇p+1z0. Said

zSi =

mSi

ωSi
ẍi

 (8)

the vector of sensor Si measurements, equation 7 allows to
write the measurements of the two sensors as functions of
the joint variables:

zS1 = h1(x13) (9)
zS2 = h2(x15) (10)

that we will use for injecting the evidence provided by the
sensors into the model.

B. PGM Representation

Equations 2, 7, and 9 provide several ways to represent
human arm kinematics. Equation 2 allows to represent the
whole (serial) kinematic chain in a recursive way. The same
chain can be represented as a directed acyclic graph (DAG).
Fig. 2 shows the graph for 1 DoF.

When dealing with more complex models, it is convenient
to use the compact representation shown in Figure 3, where
all the variables related to the same joint are collapsed in one
node as well as all the measures of the one sensor. Given the
1 DoF model, we developed the 5 DoFs model representing
the human upper limb, shown in Figure 1. The 5 DoFs DAG
is hence represented in Figure 4.

q1 q̇1

ωS1

ẍS1

mS1

q̈1

Fig. 2. Graphical Model for 1 dof model with 1 sensor attached. Light gray
circles corresponds to variables, dark gray circles are observed variables.
mS1 represents the Earth magnetic field sensed ωS1 represents the angular
velocity and ẍS1 the linear acceleration measured by the sensor.

~q1 zS1

Fig. 3. DAG representation for 1 dof with 1 sensor in compact form, with
all relative variables collapsed. The node with q1 comprehend q1, q̇1 and
q̈1, while zS1 includes ωs1, ms1 and ẍs1. Light gray circles corresponds
to variables, dark gray circles are observed variables.

C. Message passing

This section shows the algorithms and the operations
needed to obtain the marginal distributions of the variables
of interests, i.e. joint variables q. We assume each variable
of the graph to be drawn form a Gaussian distribution,
thus having w ∼ N(µw,Σw) in normal, or, equivalently,
w ∼ N(yw, Yw) in canonical form. We will make use of
both forms in the following, the transformation of one into
the other is given by equation 11:

Yw = Σ−1
w (11)

yw = Ywµw (12)

In the following we will use this notation: given a variable
w and two time steps k− 1 and k, we indicate with w−

k the
value of w calculated from wk−1 before applying evidence
from the sensors. We call ẑSi the captured measurements of
sensor Si and we call QSi the covariance matrix we associate
to the measurements.

1) Algorithms: Once initialized (e.g. equal to zero) all the
variables, we perform the S2S1 algorithm here reported when
acting between time steps k − 1 and k:

~q1 ~q3~q2 ~q5~q4

zS2zS1

Fig. 4. DAG representation for 5 DoFs with 2 sensors in compact
form, with all relative variables collapsed. Light gray circles corresponds to
variables, dark gray circles are observed variables.
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1) temporal update of root variables, i.e. joint variables
and their derivatives:

[µ−
x15k

,Σ−
x15k

] = TempUpdate(µx15k−1
,Σx15k−1

)
(13)

2) Prediction of sensor S2 measurements zS2 based on x
temporal update:

[z−S2k , Y
−
x15k

zS2k
] = UT Transform(x−15k , h2(x−15k))

(14)
In terms of message passing, referring to the figure 4
graph, this is the message that the x1 x2 x3 x4 x5 nodes
send to zS2.

3) Update of the x15 estimation based on sensor S2
evidence ẑS2 and measurements prediction by means
of an unscented transformation:

[yx15k
Yx15k

] = (15)

UT Update(y−x15k
, Y −
x15k

, z−S2k , Y
−
x15k

zS2k
, QS2, ẑS2)

(16)

This step comprises the message the zS2 node sends
to itself as to inject evidence in the graph and the
summation of the x−15 and evidence messages.

4) Marginalization of x13 from x15 of step 3:

[yx13 , Yx13 ] = Marginalize(yx15 , Yx15 {1, 2, 3}) (17)

5) Prediction of sensor S1 measurements based on up-
dated x13 from step 3

[z−S1k , Y
−
x13k

zS1k
] = UT Transform(x−13k , h1(x−13k))

(18)
6) Update of the x13 estimation based on sensor S1

evidence ẑS1 and measurements prediction:

[yx13k
Yx13k

] = (19)

UT Update(y−x13k
, Y −
x13k

, z−S1k , Y
−
x13k

zS1k
, QS1, ẑS1)

(20)

By transforming yx13k
and yx15k

into normal form we obtain
the desired marginals x15. In order to refine their estimation,
we may add another application of S2 evidence based on the
new estimation of x13 to obtain the S2S1S2 algorithm, that
is adding the following steps

7) Prediction of sensor S2 measurements based on up-
dated x15:

[z−S2k , Y
−
x15k

zS2k
] = UT Transform(x15k , h2(x15k))

(21)
8) Update of the q estimation based on sensor S2 evi-

dence ẑS2 and measurements prediction by means of
an unscented transformation:

[yx15k
Yx15k

] = (22)

UT Update(yx15k
, Yx15k

, z−S2k , Y
−
x15k

zS2k
, QS2, ẑS2)

(23)

The latter two steps can be repeated with sensors S1 and
S2 to refine the estimation, however it is not guaranteed this
iterative process to converge to a better estimation.

2) operations: Here we explain the operations underlying
the steps of both algorithms.

TempUpdate. Given the model of xi evolution in time
(see equation 24) that we assume to be affected by white
noise ν whose covariance matrix is R, we first perform a
temporal update on the root variables between time steps
k − 1 and k, that is all the variables related to a joint are
updated as

x−ik =

qikq̇ik
q̈ik

 =

1 Ts
1
2T

2
s

0 1 Ts
0 0 1

qik−1

q̇ik−1

q̈ik−1

+ ν = Axik−1
+ ν

(24)
where Ts is the sample time (time interval between k − 1-
th and k-th samples). Accordingly, we update xi covariance
matrices as

Σ−
xik

= AΣxik−1
AT +R. (25)

UT Transform. We exploit the unscented transformation
[5], [9] to predict measurements based on the updated state.
We select n sigma points X from x distributions and generate
weights accordingly. The sigma points are transformed by
means of equation 9 to have a sample Z of the target
distribution, that, as assumed when applying UT, is still
Gaussian. The UT transformation provides a prediction z− of
the measurements and the information matrix Y −

xz of the state
and the measurements, where all the variables are written in
canonical form.

UT Update. Given z−, y−x and Y −
xz , yx are linearly

updated by exploiting evidence ẑ:

yx = y−x + Y −
x Y

−
xzQ

−1(ẑ − z− + Y Txzy
−
x ) (26)

Yx = Y −
x YxzQ

−1Y TxzY
−
x (27)

thus allowing to push evidence towards x. It suffices to
transform y canonical expressions into normal µ to have the
desired marginals of qi, q̇i and q̈i.

Marginalization, that we report in canonical form. Given
a variable y with information matrix Y , let s be the set
of indices of y to keep in the marginalization and t the
remaining ones to be marginalized out, we have

Ỹ = Y (s, s)− Y (s, s)Y (t, t)−1Y (s, t) (28)

ỹ = y(s)− Y (s, t)Y (t, t)−1y(t) (29)

where Y (s, s) is the submatrix of Y in which only the rows
and columns in s are kept and ỹ and Ỹ are y and Y after
marginalization.

III. EXPERIMENT

We tested the proposed algorithms in two steps. Firstly,
we tested the algorithms with simulated data. We generated
joint trajectories reported in equations 30 to produce sensor
measures.

q1(t) = cos(γt)2 + sin(2γt)2

q4(t) = cos(γt)2 + cos(2γt)2

q2(t) = cos(γt)
q3(t) = 0
q5(t) = − sin(γt)

(30)
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Fig. 5. Experimental setup with the IMUs mounted on the participants
limb as well as the Vicon system markers.

We calculated sensors S1 and S2 outputs according to
equation 2. We considered S1 and S2 to be aligned to the
limbs they are attached to, thus having R3

s1 = R5
s2 = I3.

Synthetic data sensors have been generated with random
noise for 10 iterations and the algorithms have been tested
iteratively. The results have been averaged among all the
simulations.

The second validation step involved real measures that
were obtained from a healthy male volunteer who wore two
Bluetooth Invensense MPU9150 IMUs (Invensense, Borregas
Ave Sunnyvale, CA, USA) on the upper arm and on the
forearm respectively. He was asked to perform a sequence
of movements that were captured by both the IMUs and
the Vicon optical motion capture system (Vicon Oxford
14 Minns Business Park West Way Oxford, UK). Optical
tracking provided ground truth data to compare UKF and
PGM algorithms. Sensors data were collected at a rate of
100 Hz. The algorithms were implemented in Matlab® and
run at 100 Hz frequency. Six reflective markers allowed to
reconstruct upper limbs kinematics: M1 on the manubrium
sternal, M2 on the left acromion, M3 and M4 were placed
on the lateral and medial epicondyle to determine ulna
trochlear notch and humerus throchlea axis, M5 and M6 were
attached to the styloid process of the ulna and of the radius
respectively to have the scaphoid-pisiform axis. Two further
markers were used to capture IMUs positions. IMUs and
Vicon data were synchronized after the capturing session.
Figure 5 shows the capturing setup.

The participant was firstly asked to carry out three cali-
bration steps consisting of movements aimed at calibrating
the magnetometers followed by the N-pose and the T-
pose to calibrate the sensors orientations. In the N-pose
the subject stands with his arms along the gravity and
palms facing the body. In the T-pose the subject stands with
horizontal arms in the frontal plane. Then, he was asked to
performed a sequence of functional movements involving el-
bow flexion/extension, elbow pronation/supination, shoulder
abduction/adduction, shoulder rotation, and shoulder flex-

ion/extension. Markers data were analyzed (see [8]) to obtain
joint variables according to the kinematic model explained
in section II.

IV. ANALYSIS AND RESULTS

In order to compare algorithm performance against optical
data, for each joint variable q we define q̆ the algorithm
estimation and q̃ the variable reconstruction from optical
data. For each variable we define the root mean square error
as:

Eq =
1

N

√√√√ N∑
k=1

(
q̆(k)− q̃(k)

)2
(31)

where N is the number of samples that were captured. Eq
allows to evaluate the overall error in the joint variable
estimation given that the optical data are the ground truth.
Another measurement of estimation goodness is the correla-
tion of algorithm estimation with optical data reconstruction.
We hence define the correlation coefficient

Cq =

∑N
k=1

(
q̆(k)− ¯̆q

)(
q̃(k)− ¯̃q

)√∑N
k=1 (q̆(k)− ¯̆q)2

∑N
k=1 (q̃(k)− ¯̃q)2

(32)

We first report in Table I results obtained in the first test
synthetic data. As there was no risk of data misalignment,
only the RMSE was calculated. The results for the test with

S2S1 S2S1S2 UKF
q [rad] 0.034 0.029 0.029

q̇ [rad/sec] 0.084 0.077 0.078
q̈ [rad/sec2] 1.0782 0.9832 1.0243

TABLE I
AVERAGE OF THE Eq , Eq̇ AND Eq̈ FOR ALL THE JOINTS IN THE 5 DOFS

KINEMATIC CHAIN WITH SYNTHETIC SENSORS MEASUREMENTS.

real measurements are reported in Table II and Table III. In
Table II the comparisons among the RMSEs for every joint
for the three algorithms are shown, whereas in the Table III
the correlations between the estimation with our approach
and the UKF with the optical estimation are reported. We

S2S1 S2S1S2 UKF
q1 [deg] 6.68 6.78 6.84
q2 [deg] 7.67 6.64 7.58
q3 [deg] 3.81 3.77 3.80
q4 [deg] 7.25 7.24 7.29
q5 [deg] 15.47 15.49 15.50

TABLE II
Eq , Eq̇ AND Eq̈ FOR ALL THE JOINTS IN THE 5 DOFS KINEMATIC CHAIN

WITH REAL SENSORS MEASUREMENTS.

finally report the estimation of the S2S1S2 algorithm in
figure 6 as an example of how these algorithms perform.
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S2S1 S2S1S2 UKF
q1 0.94 0.94 0.93
q2 0.81 0.81 0.80
q3 0.98 0.98 0.98
q4 0.98 0.98 0.98
q5 0.75 0.74 0.74

TABLE III
Cq , Cq̇ AND Cq̈ FOR ALL THE JOINTS IN THE 5 DOFS KINEMATIC CHAIN

WITH REAL SENSORS MEASUREMENTS.
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Fig. 6. Motion tracking results obtained with the S2S1S2 algorithm. The
DoF-related functional movements are highlighted by the boxes.

V. DISCUSSION

From the experimental setup it can be seen that as far as
synthetic measures are concerned the iterated message pass-
ing algorithm shows the same results of the UKF for q and q̇,
while there is a slight improvement in the q̈ estimation. The
basic message passing algorithm performs instead slightly
worse than the UKF. Results from real data show that while
the message passing algorithm has an overall performance
equal to the UKF, the iterated message passing algorithm
performs slightly better with an increment of accuracy of
1° on the shoulder rotation estimate. Although errors in
optical estimation of joint angles may have arisen questions
about the validation, the high values of correlation between
the different algorithms and the optical estimation allow to
conclude for the validity of the experiment. It is to be noted
that although the current implementation of the algorithm
preserves the sensors independence, joints variables can be
correlated each other. This happens because the sensor S2
output is determined by all the 5 DoFs of the kinematic chain.
During the collection of the evidence from the leaf to the root

we obtain a full covariance matrix, leading to dependencies
among state variables belonging to different joints.

VI. CONCLUSIONS

In this work we presented a novel approach to human
motion reconstruction with IMUs that exploits PGMs. The
model represents better the actual dependencies of the vari-
ables compared to Kalman Filters. We proposed a message
passing algorithm and an iterated message passing algorithm
to infer joints variable from sensor measurements. The results
of the two algorithms have been compared to the ones
of a UKF, widely used in the state of the art, both with
synthetic and real measurements data. The results showed
that there is a slight improvement in the estimation using
the iterated message passing algorithm. As far as future
developments are concerned, we are actually working at
refining the message passing algorithm to maintain also the
independence among different joints variables and increase
the estimates accuracy. An additional aspect that will be
considered is the computational cost, to make the algorithm
suitable for real-time embedded motion tracking.
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