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Abstract— Upper Limb Work-related Musculo Skeletal Dis-
orders (ULWMSD) are constantly increasing every year in
developed countries. It is estimated that in Italy, in 2007
ULWMSD were the 41,6% of all the work-related pathologies.
In this context, the importance to correctly diagnose and treat
this kind of pathology is growing. Traditionally the assessment
is done using pen-and-paper observational techniques in which
movements are manually classified, labelled and compared in-
tegrating the results with subjective questionnaires given to the
monitored subjects. The main problem with those traditional
methods is the lack of objective assessment regarding the
motion and the forces exerted, which are inferred by subjects
inquiry and the body posture, manually extracted from video
tapes. In this context we propose a novel wired system for
assessing the muscular effort and posture of the human upper
limb for ULWMSDs diagnosis in ecologic environment. The
system is composed of inertial units to reconstruct the upper
limb posture and EMG sensors to assess the muscle effort.
The upper limb is considered as a kinematic chain comprising
three degrees of freedom (DoFs) for the shoulder, two DoFs
for the elbow and two DoFs for the wrist, while forearm
flexor muscles are monitored through EMG. We propose a
preliminary validation of the system testing it for assessing
posture and muscle effort of a check-out operator during
everyday real-life operations.

I. INTRODUCTION

Upper Limb Work-related Musculo Skeletal Disorders

(ULWMSD) are one of the most common health problems

for workers. It is estimated that in Italy, in 2007 ULWMSD

were the 41,6% of all the work-related pathologies. The

risk factors causing ULWMSDs are multiple and usually

they can be classified into three main groups: individual,

psychosocial, and physical. In particular, considering the

physical category workload in repetitive activities and body

postures are recognized to be among the most influential

causes for pain and diseases-related problems [1], [2], [3].

Traditional techniques for assessing the postural stress and

its relation to ULWMSDs consist of observing the angular

deviation of a body segment form its neutral position, force

exertion, and repetition. This can be done by self-reports,

observational inspection or by instrument-based techniques

[4]. Self-reports methods usually consist of questionnaires

that are filled by the monitored workers. Despite being

straightforward and easy to use, those methods can give

a distort information due to the subjectivity of the worker

perception that can be affected by eventually pre-existing

MSDs.

Observational inspection consists on the visual analysis

of recording observations with the help of pro-forma sheets.
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Fig. 1. Male subject wearing the presented system. The system comprises
4 inertial sensors and up to 32-channels EMG sensor array. The signals are
gathered and precessed by a board .

Several methods are available for this kind of analysis. One

of the most used is the Rapid Upper Limb Assessment

(RULA) [5], which assesses biomechanical and postural

loading on the human body with particular attention to the

neck, trunk and upper limbs. Another technique for posture

classification from recordings is the Ovako Working Posture

Analysing System (OWAS) [6], developed by the Ovako

Oy Steel Co. in Finland. In this system the movements of

body segments around the lower back, shoulder and lower

extremity (including the hip, knee and ankle) are categorized

in different classes: bending, rotation, elevation and position.

During assessment, the analyst uses a four digit code to rep-

resent the positions of the back (four choices), the arms (three

choices), the legs (seven choices) and force. The system takes

into account also action categories to reflect the magnitude

of the risks. The National Institute for Occupational Safety

Health (NIOSH) has proposed the NIOSH Lifting Index [7],

for evaluating the risks related to manual handling of load

during lifting tasks. A quantitative method for assessing the

risk related to manual handling repetitive tasks was proposed

by Colombini and Occhipinti [8] that allows us to evaluate

the ratio between the technical actions actually performed

by the worker and the number that would be recommended.

These latter methods are cited by the ISO 11228 and UNI-EN

1005 regulations and guidelines for upper limb risk related

to manual handling.

Observational methods are practical and inexpensive and

can thus be used in several workplaces, being also not

intrusive. On the other hand they heavily rely on the observer

skills in terms of evaluating quantitative parameters such as

joint angles and loads displacement by visual inspection.

These methods would greatly benefit form instruments that
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Fig. 2. System architecture representation. The board acquires all the raw signals and computes the features. The data sent to the host PC is further
analysed and the arm motion is reconstructed along with the computation of the RULA score.

allow us to measure some or even most of the parameters

involved in the calculation while minimizing the disturbance

caused to the user. Instrument-based techniques rely on

direct measurements from sensors attached on the workers

body. Several solutions have been explored ranging from

wearable to hand-held devices. In [9] the authors present

a portable system where a three-axis accelerometer is used

as an inclinometer for measuring postures and movements

over time. The aim of the work is evaluating risks for neck

and shoulder disorders during sustained or frequent work

with elevated arm. A similar approach is presented in [10]

where a body sensor network composed of inertial units

and goniometers is attached directly to the worker upper

body. A 20 DoFs biomechanical model is used to assess

body posture and estimated joint angles are used for RULA

assessment. A visual feedback of the RULA results are given

to the user. The system takes only into account postural

risks. In [11] the authors presents a model to determine

the likelihood of incurring ULWMSDs for the upper limb.

Hand motion and exerted force are monitored through a

commercial CyberGlove and a UniForce pressure sensor.

In particular wrist and grip measurements are gathered to

predict diseases incident rate. A different tracking technique

is used in [12], where hand kinematics is reconstructed with

a marker-less single-camera video tracking algorithm. The

risk is evaluated with an automated estimation process using

the Hand Activity Level [13]. Several different methods

(observations, interviews, EMG, inclinometry, and vibration

monitoring) are compared by the authors in [14], with

the focus on lower back injuries. The work assesses the

capability of EMG monitoring equipment to provide data

focused on only one risk factor, but with a very high level

of detail. Moreover several metrics (mean, peaks, percentiles,

cumulative exposure, rate of change) can be investigated,

though being a more costly solution compared to traditional

observational methods. In assessing ULWMDs, it is crucial

to take into account several factors at the same time, in

particular both posture and load have to be considered and

how they relate during the task execution. In this context we

present a novel wearable system for the assessment of risk

factors for ULWMSDs, with the focus on the upper limb.

The system exploits inertial sensors and a biomechanical

model to reconstruct the posture of the upper limb, taking

into account shoulder, elbow and wrist motions. Muscle

efforts for the fore arm flexors are measured with a 8-channel

EMG array sensor and compared to the maximum voluntary

muscle contraction. The posture and the load are then used

by the system to give a real time estimation of risks, using

the RULA assessment. A preliminary visual analysis of the

results is given in the form of an animated avatar, where there

RULA score risk level is represented. The paper is organized

as follows. Section II gives an overview of the system and of

the algorithms used. Section III describes the experimental

tests used for the preliminary validation of the system and

their results. Section IV discusses the results obtained with

the system during tests and describe future developments for

the system.

II. METHODOLOGY

Wearable motion tracking systems based on inertial mo-

tion units (IMUs), being self contained and unobtrusive,

represent a solid alternative to classical optical tracking

systems. Motion reconstruction based on strapdown integra-

tion of the IMU’s data is unsuitable, because of the drift

problem. Filtering algorithms can be employed to address

this issue. We combine a 7 DoFs model of the human arm

having the chest as root and three links for upper arm,

forearm and hand. The shoulder is modelled as a 3 DoFs

spherical joint, two revolute joints model elbow flexion and

forearm pronosupination and the same for wrist abduction

 XPL:978-1-4799-5901-3/14/$31.00 ©2014 IEEE

341



and flexion. The Denavit-Hartenberg (DH) convention is

used to model the kinematic chain, where a homogeneous

matrix Ai
i−1

dependent on ith link parameters and the joint

angle ϑi represents the relationship between two consecutive

i − 1th and ith frames. The set of joints’ angles and their

first and second derivatives compose the state of the filter

used in our reconstruction algorithm:

Θ = [ϑ1, ϑ̇1, ϑ̈1, . . . , ϑ7, ϑ̇7, ϑ̈7] (1)

Given the measurements sensed from IMU sensors

(namely angular velocity, linear acceleration and Earth mag-

netic field), the relationships between measures and the cho-

sen state is non-linear. For this reason we use an Unscented

Kalman Filter to estimate joint variables. Further details on

algorithms can be found in [15] and in [16]. Figure 3 shows

a schematic representation of the kinematic model that was

used.

Fig. 3. Schematic representation of the seven DoFs model used in our
system. The model comprises three revolute joints for the shoulder, two for
the elbow and two for the wrist. DH reference frames are represented along
with the model .

Surface EMG signals allow us to determine several fea-

tures related to the task carried out by the user. In particular,

they allow to estimate the torque on the joint that the muscle

exerts on the actuated joint and, as a consequence, the force

produced in specific points of the human body such as hands.

Moreover it is possible to estimate the fatigue status of the

measured muscle fibres. EMG signals are typically filtered

with a bandpass filter (frequency [10 − 500]Hz for 1kHz

sampling frequency or [10 − 250]Hz for 500Hz sampling

frequency) to keep the frequency band that contains most of

the power i.e. [20− 200]Hz (see [17]).

Typically from the raw EMG data, first the power spectral

density (PSD) is computed, as the square of absolute value

of the Fourier transform of the signal divided by the signal

length. Then two features are evaluated: the RMS (root mean

square) and the MNF (mean frequency) or the MDF (median

frequency) of the power spectrum. The first is related to the

magnitude of the force that is exerted as a consequence of

the muscle activation. Given the RMS values during 0% and

100% of maximum voluntary contraction (MVC), the force

produced is estimated based on the current value of the RMS

[18]. MNF and MDF are instead mostly related to muscle

fatigue as both MNF and MDF decrease as the monitored

muscle get fatigued [19]. MNF is defined as:

MNF =

N∑

i=1

fiPi/

N∑

i=1

Pi (2)

where f is the frequency and P is the PSD. The MDF is

defined as the frequency at which the PSD is devided into

two region of equal amplitude, mathematically:

MDF∑

i=1

Pi =

N∑

i=MDF

Pi =
1

2

N∑

i=1

Pi. (3)

In our system we use up to 32 electrodes for surface EMG.

EMG signals are filtered and processed to obtain RMS. The

RMS of the signal allows us to determine some of the values

that are required for the RULA such as the frequency of

repeated tasks (e.g. grasping for load manual handling) and

the force produced.

All the EMG and IMU signals are gathered by the board

and sent via Bluetooth to a PC. EMG features are computed

by the board, while the posture reconstruction software runs

off-line on the host PC. The time synchronization of the

IMU and EMG’s data is guaranteed by the acquisition board.

Conversely, the camera stream is manually aligned to the

sensors data. After this alignment phase the different actions

are manually segmented according to the camera stream.

The segmentation allows us to select the features in a

desired window that corresponds to a specific activity in

which the loads and the other parameters needed for the

RULA where constant.

Figure 2 shows the system architecture along with all the

computational phases. The preliminary visualization com-

prises the computation of the RULA score for the ma-

nipulation of known objects and an animated avatar of

the monitored arm. The avatar includes a jet color map

representation of the wrist, according to a chosen EMG

feature intensity.

The communication between the board and the host PC is

implemented as a web interface, managed by a C webserver,

while the reconstruction algorithms and RULA score compu-

tation are implemented both in C++ and in Matlab/Simulink.

III. EXPERIMENTAL RESULTS

The preliminary test of the system has been carried out in

the real-life scenario of a check-out operator during everyday
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activity. The participant, a healthy women, was monitored

for approximately 20 minutes for each arm. The participant

was sensorized with 4 inertial units MPU9150 (Invensense,

Borregas Ave Sunnyvale, CA, USA) placed on the back,

upper arm, fore arm and back of the hand, while a 8 channel

EMG sensors array is used to monitor the fore arm flexors.

Figure 4 shows the setup for the sensors system along with

the actual placements of the EMG sensors array. The setup

for the system is non-intrusive and does not effect at all the

normal procedures carried on by the subject.

Reference 

Electrodes for the 

EMG signals

Surface EMG 

Array Sensor

Hand and Fore arm 

IMUs

Upper arm IMU 

+

 Board

Fig. 4. On the top the setup for the system is shown, the board and three of
the four IMUs (Upper arm, fore arm and back of the hand) are highlighted.
Below the actual placement for the EMG sensors is shown. The sensors are
placed in such a way to monitor the activity of the fore arm flexors.

In addition the scene was captured with two cameras, one

RGB camera and RGB-D sensor (Microsoft Kinect Camera).

Figure 5 shows the setup and the views of the two cameras.

Fig. 5. Three views of the setup in the preliminary test. On the right the
main scene captured with a camera. On the left the views of the RGB-D
sensors that allow to understand the organization of the workspace. The
RGB-D could be used for improving the tracking of body motions and
interaction with the objects.

During the experiment two different groups of items were

presented to the participant. The first one (known bag)

consists of a combination of preliminarly weighted items,

while the second one comprises (customer bag) random

items, purchased by real costumers. The list of the items

with their correspondant weights is reported in Tab I.

TABLE I

ITEMS AND WEIGHTS FOR THE KNOWN COLLECTION COMPOSITION

Item Weight [Kg]

Coke cans pack 2.160
Bisquits pack (small) 0.270

Tuna cans pack 0.440
Cornflakes pack 0.365

Tea bottle 1.620
Potato bag 4.020

Bisquits pack (big) 0.510

The results of the motion reconstruction step for the

capture of the left arm are shown in Figures 6, 7 and 9.
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Fig. 6. Reconstruction of shoulder angles, for the left arm.
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Fig. 7. Reconstruction of elbow angles, for the left arm.

The data from the motion reconstruction were related to

the EMG features. In particular fore arm flexors muscle effort

were associated to the wrist flexion. An example taken from

the test for the left arm is shown in Figure 8, where RMS of

the EMG signals for every channel and wrist flexion angle

are represented.
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Fig. 8. Wrist flexion angle and the corresponding RMS of the EMG signal for the fore arm flexors.

The results from the motion reconstruction and the known

weights from Table I, were used to give the RULA score

of the movements involved in the experiment. The RULA

assessment (RS) can be computed as a function of several

variables, in particular:

RS = f(sh, ef , wr, ams, lms, F, Ffl, asup, nf , ne, te, tf , lsup).
(4)
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Fig. 9. Reconstruction of wrist angles, for the left arm.

Where sh are the angles of the shoulder three DoFs, ef is

the elbow flexion angle, wr are the flexion and abduction

angles of the wrist, ams and lms are the muscle scores

for arms and legs according to numbers of repetitions per

minute, F is the load to be handled, Ffl is 0 or 1 if the load

is handled intermittently or statically, nf is the neck flexion

angle, ne and te are flags for neck and trunk bending, tf is

trunk flexion angle and asup and lsup are the flag for arms

and leg support.

An example of the RULA score assessment is shown in

Figure 10, where the score is computed for the manipulation

phases of two known objects (highlighted in red). In partic-

ular the objects considered are che Coke cans pack and the

Fig. 10. RULA score for the manipulation phase of two known objects.
The computation starts from the beginning of the manipulation of the first
objects and ends after the end of the manipulation of the second object. The
objects involved are highlighted in red.

potato bag. As it can be seen from the figure, during some

portions of the manipulation phase the RULA score increases

according to the movements of the subject.

The correctness of the obtained scores was checked by

visual inspection of the recorded tape of the experiment, as

it happens in traditional observational methods.

IV. DISCUSSION

We presented a system for the assessment of ULWMSDs.

The system exploits both surface EMG and IMU signals to

reconstruct the human motion and relate EMG features and

RULA score to it. The system is composed of a board for

acquiring raw data signals and compute EMG features, in

particular RMS and MNF/MDF of the power spectrum are

considered. The data is then sent to a host PC via Bluetooth,

where the motion reconstruction pipeline runs. The resulting

motion analysis is related to the EMG features to give an

estimation of the ULWMSDs risk, along with the RULA

score computation when known objects are involved in the

task monitored.
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The system have been employed, as a preliminary, test

to monitor a check-out operator during everyday operations.

The results of the test have shown the capability of the

system to correctly estimate the ULWMSDs risks, exploiting

both postural and muscle effort information.

Up to date several other tests have been successfully

carried on, in such scenarios as plaster cast application

and nursing home operators. All the tests have shown the

ULWMDs assessment capabilities of the system.

Further development of the system will involve adding

more features to the computation and the possibility to

reconstruct also the motion of the lower limbs.
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[1] A. Aarås, R. Westgaard, and E. Stranden, “Postural angles as an
indicator of postural load and muscular injury in occupational work
situations,” Ergonomics, vol. 31, no. 6, pp. 915–933, 1988.

[2] L. Forcier, C. Lapointe, M. Lortie, P. Buckle, I. Kuorinka, J. Lemaire,
and S. Beaugrand, “Supermarket workers: Their work and their
health, particularly their self-reported musculoskeletal problems and
compensable injuries,” Work: A Journal of Prevention, Assessment and

Rehabilitation, vol. 30, no. 4, pp. 493–510, 2008.
[3] A. Kilbom et al., “Assessment of physical exposure in relation to

work-related musculoskeletal disorders-what information can be ob-
tained from systematic observations?” Scandinavian journal of work,

environment & health, vol. 20, pp. 30–45, 1994.
[4] G. David, “Ergonomic methods for assessing exposure to risk factors

for work-related musculoskeletal disorders,” Occupational Medicine,
vol. 55, no. 3, pp. 190–199, 2005.

[5] L. McAtamney and E. Nigel Corlett, “Rula: a survey method for the in-
vestigation of work-related upper limb disorders,” Applied ergonomics,
vol. 24, no. 2, pp. 91–99, 1993.

[6] P. Kivi and M. Mattila, “Analysis and improvement of work postures in
the building industry: application of the computerised owas method,”
Applied Ergonomics, vol. 22, no. 1, pp. 43–48, 1991.

[7] T. R. Waters, V. Putz-Anderson, A. Garg, and L. J. Fine, “Revised
niosh equation for the design and evaluation of manual lifting tasks,”
Ergonomics, vol. 36, no. 7, pp. 749–776, 1993.

[8] D. Colombini and E. Occhipinti, “Preventing upper limb work-related
musculoskeletal disorders (ul-wmsds): New approaches in job (re)
design and current trends in standardization,” Applied ergonomics,
vol. 37, no. 4, pp. 441–450, 2006.

[9] E. Bernmark and C. Wiktorin, “A triaxial accelerometer for measuring
arm movements,” Applied ergonomics, vol. 33, no. 6, pp. 541–547,
2002.

[10] N. Vignais, M. Miezal, G. Bleser, K. Mura, D. Gorecky, and F. Marin,
“Innovative system for real-time ergonomic feedback in industrial
manufacturing,” Applied ergonomics, vol. 44, no. 4, pp. 566–574,
2013.

[11] A. Freivalds, Y. Kong, H. You, and S. Park, “A comprehensive
risk assessment model for work-related musculoskeletal disorders
of the upper extremities,” in Proceedings of the Human Factors

and Ergonomics Society Annual Meeting, vol. 44, no. 31. SAGE
Publications, 2000, pp. 5–728.

[12] R. G. Radwin, “Automated video exposure assessment of repetitive
motion,” in Proceedings of the Human Factors and Ergonomics Society

Annual Meeting, vol. 55, no. 1. SAGE Publications, 2011, pp. 995–
996.

[13] A. Franzblau, T. J. Armstrong, R. A. Werner, and S. S. Ulin, “A cross-
sectional assessment of the acgih tlv for hand activity level,” Journal

of occupational rehabilitation, vol. 15, no. 1, pp. 57–67, 2005.
[14] C. Trask, K. Teschke, J. Village, Y. Chow, P. Johnson, N. Luong, and

M. Koehoorn, “Measuring low back injury risk factors in challenging
work environments: an evaluation of cost and feasibility,” American

journal of industrial medicine, vol. 50, no. 9, pp. 687–696, 2007.
[15] L. Peppoloni, A. Filippeschi, E. Ruffaldi, and C. A. Avizzano, “A novel

7 degrees of freedom model for upper limb kinematic reconstruction
based on wearable sensors,” in Intelligent Systems and Informatics

(SISY), 2013 IEEE 11th International Symposium on. IEEE, 2013,
pp. 105–110.

[16] E. Ruffaldi, L. Peppoloni, A. Filippeschi, and C. Avizzano, “A
novel approach to motion tracking with wearable sensors based on
probabilistic graphical models,” in Robotics and Automation, ICRA.

The IEEE International Conference on. IEEE, 2014.
[17] C. J. De Luca, L. Donald Gilmore, M. Kuznetsov, and S. H. Roy,

“Filtering the surface emg signal: Movement artifact and baseline noise
contamination,” Journal of biomechanics, vol. 43, no. 8, pp. 1573–
1579, 2010.

[18] D. Staudenmann, K. Roeleveld, D. F. Stegeman, and J. H. Van Dieën,
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