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Abstract— In the robot programming by demonstration
(PbD) framework, the high-level representation of a skill in
a series of action units gives an intuitive method to program
and instruct robot behaviors. In this context we present a
ROS (Robot Operating System) integrated architecture for
learning households manipulation tasks by one observation.
The user is observed during the execution of everyday tasks,
every action is analyzed and its effect is translated into changes
in the environment state. During the observation a strip-like
map of the task is built and stored as a sequence of actions.
From the map obtained the task can be performed. A planner
robustly adapts the execution both to different environment
initial conditions and to possible faults, occurring during the
operations. We test the capability of the chosen approach
to autonomously learn and robustly perform complex tasks,
such as setting up and clearing a table in a real kitchen-like
environment.

I. INTRODUCTION

In the last decade robotics community is envisioning
the possibility of programming robots with intuitive and
natural methods for human user. Obviously this is a non-
trivial task considering the potential vastness of behaviors
that people would want from a general-purpose home robot.
Robot programming by demonstration (PbD) research field is
focusing on giving solutions to this challenge [2]. One of the
main trend in PbD research field focuses on how to represent
skills and how to generate the representation starting from
the skill observation. Currently the problem has two different
approaches:

• low-level representation of the skill, where the focus is
on learning trajectories from the human demonstrator

• high-level representation, where the focus is on learning
how to represent the task as a sequence of predefined
motion elements (primitives).

The first approach focuses on representing generalization of
taught gestures. Usually it is done using statistical methods
[3], [4], [5], [6] or dynamical systems [7], [8], [9]. While
offering the possibility to encode human movements, this ap-
proach is not suitable for learning complex high-level tasks.
The symbolic approach usually relies on a large amount
of prior knowledge, in particular regarding important cues
used for example for the task segmentation. Nevertheless it
gives the capability of efficiently learning high-level complex
skills through a relatively easy process. For that reason this
approach have been widely studied and several methods have
been presented. In [10] the authors present a graph-based

Lorenzo Peppoloni, Alessandro Di Fava, Emanuele Ruffaldi and Carlo
Alberto Avizzano are with Scuola Superiore Sant’Anna, TeCIP Institute,
PERCRO laboratory l.peppoloni@sssup.it

representation of a skill. Each node of the graph represents
a different behavior described in terms of preconditions (acti-
vation conditions) and postconditions (effect of the behavior).
Every behavior is mapped to a robot primitive behavior

which reaches from the same preconditions the desired post-
conditions. The architecture is capable of generalizing from
multiple demonstrations and the execution is refined with
sequences of supervised performance. Command cues are
given by the user to facilitate learning, in particular during
the task segmentation and the supervised execution phases.
In [11] the authors start from a hierarchical representation
approach. During multiple demonstrations the relevance of a
feature for every action is estimated. This is done according
to background knowledge, action occurrence probability in
all demonstrations and possible user’s vocal comments. The
work focuses mainly on manipulation tasks (where at least
one grasp is included). The approach shown needs one
demonstration for the task, but uses prior knowledge, in the
form of previous demonstrations to model the action. The
system performance is shown focusing on the household
task of setting up a table. The household manipulation task
can also be found in [12]. The authors present an approach
in which a run time planner is used to choose best action
policy according to environment state. The approach is task-
oriented, thus the robot replicates the results of the human
demonstration by planning at execution time a sequence of
actions. Constraints in task execution are understood from
multiple demonstration of the same task. The validity of the
system is assessed with tests, both in a virtual environment
and real-life scenarios. The task is setting a table up, colored
cube blocks are used instead of real objects. A different
approach is presented in [13], where the authors, starting
from the analysis of learning among social animals, explore
more in-depth the role of the teacher during the learning.
A hierarchical structure for sequences, tasks, and behaviors

is generated for learning. Elements at every level of the
hierarchy can be directly taught to the robot putting it
through the execution by means of a teleoperation control.
The approach presented is proved to scale well from simple
to moderately complex tasks. A hybrid approach, including
both high-level and low-level representation is presented in
[14]. The authors propose a framework in which multiple
observations of the same task are used to understand the
essential interactions and to build a model. This model is
used as a priori knowledge to generalize the trajectories for
the manipulated objects. Experimental results are presented
using a humanoid robot and a pouring task as benchmark.
All the works presented uses more than one demonstration



or combine one demonstration of the task with a following
supervised execution, to refine the task model. This is
very time-consuming for the user, taking into account the
potentially infinite number of different behaviors he would
want to program. To be effective, robots should allow the
users to program new behaviors on the fly and then let the
system execute the task autonomously as quickly as possible.
For that reason, we strongly believe that, to be usable in a
real life scenario, a learning by demonstration framework
should employ as few demonstrations as possible. Moving
from that assumption, we propose an architecture capable of
learning from only one human demonstration, without further
intervention of the human user. In doing so the main problem
is how to cope with task execution variability due to different
teacher’s behaviors and different initial conditions of the
environment. We start from the basic idea of understanding
the user effects on the environment and matching them with
a robot primitive having the same effects. To cope with
those problems we support the learning architecture with a
deterministic finite state machine-based planner. The goal of
the planner is twofold:

• it analyzes the representation of the task and rearranges
it taking into account the end goal, the actions order
and possible new initial conditions

• it provides the robot with a fault tolerant behavior
during the execution of the task

All the functionality are integrated in ROS [1]. All the robot
primitives are implemented using existing ROS stacks and
the architecture itself have been implemented in a stack, thus
resulting in a platform-independent framework available for
every ROS-based mobile platforms.

The paper is organized as follows. Section II defines the
basic assumptions of the architecture. Section III explains
how the task is demonstrated, segmented and represented.
Section IV explain how the execution phase is planned and
autonomously supervised. Lastly section V reports how the
system performs in learning how to set up and clear a table
in a real kitchen-like scenario and section VI discusses the
results obtained and further development for the presented
architecture.

II. PRIMITIVES

We start from the assumption that a task can be built
as a sequence of existing behaviors, called Primitives. We
focus on manipulation tasks, which comprise all the activities
consisting on moving objects between certain locations in the
work environment. The goal for this type of tasks is having n
objects in a particular regions of the space, moved following
a desired sequence. Tasks as ordering a room, setting a table
up or clearing a table can all be included in this category.
Manipulation tasks can be decomposed as a series of the
following actions:

• locating a shown zone of interest in the environment,
where with zone of interest we mean locations where
the actual manipulations take place

• moving between multiple zones of interests

• observing environment state
• interacting with the environment to change its state, in

practice manipulate objects.

Those can be considered the predefined motion elements of
human demonstrator, thus his primitives. Those human prim-
itives can be mapped to robot skills considering the effects
of every primitive on the environment [10]. In particular we
define two sets of primitives PS and PA. The first set are
Support Primitives, that are behaviors which do not involve
actual manipulation but are necessary to model the task. The
second set is Action Primitives and comprises manipulation-
related behaviors.

The sets are defined as follows:

PS =

{

locate human demonstrators
analyze environment status

PA =

{

pick object
place object

(1)

PS set is used to instruct the system on where the actions is
taking place at every step of the demonstrations. PA set is
used to construct the actual sequence of behaviors needed to
model correctly the task. It is to be noted that we consider
the case in which PA behaviors act on one object at time.

III. TASK REPRESENTATION AND MODELING

Since we focus on only one demonstration of the task,
we cannot rely on autonomous segmentation processes based
merely on task observation. For that purpose we decide to
use social cues to instruct the system. In particular we use
vocal commands to guide the learning phase.

The commands used are:

Follow me/Stop: to indicate zone of interests lo-
cation, this is done during the initial phase of both
learning and executing phases
Watch: to focus on one zone of interest to infer its
new state

Two additional commands Hello and Completed are used to
start and end the learning phase. Commands are translated
by the system in behaviors from PS set. After every step of
the task demonstration the changes in the environment are
assessed by the system. More specifically the state of the
environment is defined as the state of each zone of interest.
Considering the i− th zone of interest at step k the state Si

k

is defined as the number and type of objects O it contains
and their exact locations pos in the space.

Si
k =

{

O1 O2 · · · On

pos1 pos2 · · · posn

}

(2)

Given two consecutive states Si
k and Si

k+1 the transition
between them is defined as

Si
k+1 = Pl(S

i
k, Os) (3)

where Pl is the l − th primitive taken from the PA set and
Os is the object of the state Si

k being manipulated in the last
step of the demonstration. Pl is inferred autonomously by



the system comparing the Sk and Sk+1 in terms of number
and type of objects and their positions.

Three are the possible cases, for every object.

• A new object O∗

j is in Si
k+1, without being in Si

k, in
this case the system will infer a Place primitive for O∗

j

on location of interest i.

O∗

j ̸∈ Si
k and O∗

j ∈ Si
k+1 → Place

• An object O∗

j is in Si
k, without being in Si

k+1, in this
case the system will infer a Pick primitive for O∗

j on
location of interest i.

O∗

j ∈ Si
k and O∗

j ̸∈ Si
k+1 → Pick

• An object O∗

j is in Si
k, and in Si

k+1, but in a different
position, in this case the system will infer a sequence
of a Pick and a Place primitive for O∗

j on location of
interest i

O∗

j ∈ Si
k and O∗

j ∈ Si
k+1

and

posk ̸= posk+1 → Pick and P lace

Every step of the demonstration is saved in a strip-like
map, as shown in Figure 1 for a two steps example. Also
the final states of the location of interest are saved. Since
the system is using only one demonstration, no inference
can be done at this level about the generalization of the task.

Pa(Si
0, Oj) Pb(Si

1, Oj) {Si
end}

Fig. 1. Example of the representation for a two step task. Starting from
initial state S0, the first step is the execution of the primitive Pa on object
Oj of location i. The second step is primitive Pb on object Oj of location
i. Lastly final state Send for every location is saved.

IV. TASK PLANNING AND EXECUTION

During every execution phase the planner starts from the
map of the task and creates a new ad-hoc map (Execution

map) for this particular execution. At the beginning of the
execution phase, the system assesses the initial conditions
of the environment. In particular the initial states Si

0 for
the locations of interest are detected and compared to the
desired final states in the map. From this comparison all
the unnecessary steps are pruned from the execution map.
In a second phase all the remaining steps are analyzed to
assess their necessity to achieve the final state. All the steps
considered non influential are pruned from the map. For non
influential we mean, for example, manipulation sequences of
objects which are not present in the final state of the map. At
this point the system starts executing the steps in the obtained
execution map. If during execution the state step i−th is not
feasible the planner modifies the execution map adding new
steps, to be performed before the current step. In particular,
during manipulation tasks, three are the possible scenarios:

• the object is already on the right location of interest but
in the wrong position and its final position is free

• the object is already on the right location of interest but
in the wrong position and its final position is not free

• an object not present in the final configuration is on the
location of interest. In this case the object is moved to
a free space in another location of interest.

How the first two situations are managed by the planner
is shown by the diagram in Figure 2. When a pick/place
sequence is detected for the same object, if the object is
already present and in the desired position the primitive is
removed from the execution map. Otherwise, if the object is
present but in the wrong position it is moved. If the desired
position for the object is not free, primitives are added to
move first the obstructing object, which will be later managed
by other primitives.

A present?

position 
free? Position?

Add
Pi(Si+1, O

∗

l )

Add
Pi(Si+2, O

∗

l )

Add
Pi(Si−1, O

∗

j )

No Yes

No No

Map
ok

Yes

Remove
Pl(Si, O

∗

j )

Yes

Pl(Si, O
∗

j )Pi(Si−1, O
∗

j )

Remove
Pi(Si−1, O

∗

j )Remove
Pl(Si−1, O

∗

j )

Fig. 2. Diagram showing the behavior of the planner regarding objects
already present or in the case of obstruction by other objects. Pi and Pl

are Pick and Place primitives. When a Pick/Place sequence for the same
object is in the action list, the primitives are eventually changed to manage
already in place objects, already present objects but in the wrong position
and obstructing objects .

After the execution of every step, its success is assessed
and in case of failure the step is performed again or new
primitives are added to achieve the desired state. An example
of how the map in Figure 1 can be modified in an execution
map is shown in Figure 3.

Pc(Si
0, Oj) Pb(Si

1, Oj) {Si
end}

Fig. 3. Example of possible execution map. Starting from the original
task map, primitive Pa have been pruned, because not necessary while the
primitive Pc have been introduced to make the Pb primitive feasible.

An basic real example of how the execution map is
obtained from a learning map is shown in Figure 4, where
only one location of interest and three objects are considered.

Starting from the showed map and the desired final state,
the planner compares the new initial state S0 with the final
state. Since object A is already present and in the correct



Place(S0, A) Place(S1, B) Pick(S2, C)

Send

A : (xA, yA)

B : (xB , yB)

A
B

S0

A : (xA, yA)

C : (xC , yC)

A

C Place(S0, B) Place(S1, C)

Send

Send

Place(S0, B) Send

Pick(S0, C) Place(S1, B) Send

Phase 1

Phase 2

Execution Map

Learning Map

Fig. 4. Example of planner action in a three objects, one location of interest case. Starting from the original task map, primitive P lace(S0, A) is
removed because it is not needed comparing initial state S0 an desired finale state Send. Then primitive P lace(S1, C) is removed because not necessary
considering Send. Lastly primitive Pick(S0, C) is introduced to make the primitive P lace(S1, B) feasible, since the object B desired spot is occupied
by object D. The resulting execution map is shown.

position the first Place primitive is pruned (Phase 1). Then
analyzing the final state the second Place primitive is pruned
since it acts on object C, which is not present in the final
state (Phase 2). Lastly a new primitive is introduced since
to place object B in its final position, object C must be first
moved to solve the cluttering problem.

V. EXPERIMENTAL TESTS

To show the performance of the system we carried out
experimental tests using as benchmark the manipulation
tasks of setting up and clearing a table. We have already
presented the actual implementation of the system in the ROS
framework. The interested reader can refer to [15] for details.
The platform used for the test is a Kuka YouBot [16], which
is ROS compatible. For the tests a kitchen-like environment
has been set up, in which the locations of interest are the
sink and the table. The objects involved in the tests are
shown in Figure 6 and are already known by the robot.
This means that the platform is capable of recognizing and
manipulating the objects. The platform is equipped with two
Kinect cameras (Microsoft Corp., Redmond Washington) to
navigate in the environment and recognize and manipulate
the objects. Pictures of the robot performing the task learned
in the environment are shown in Figure 5. The location
of interest are equipped with markers to aid the YouBot
navigation and to express objects positions in sink/table own
reference system. We carried on one test for the learning
and two for the performing. In the learning test the robot
understands how to set up the table for one person. Then
the acquired knowledge is used to set the table up from two
different starting conditions.

In the first test we started with all the objects on the sink.
In the second one an object is on the table in the wrong
position and the other is on the sink.

A. Learning phase test

The learn phase, as explained in section III, is guided by
user vocal commands. First the robot performs the recogni-
tion handshake, in which it recognizes and tracks the user,
then commands are given to show the locations of interest
for the task to be learned. In this phase the initial state
of both table and sink is saved. Then the user changes the
furniture configurations and after every change tells the robot
to navigate to table/sink and infer which primitive has been
applied from the comparison between previous and current
state. The process ends with the ”Completed” command,
after which, the robot saves the actions sequence.

In the saved sequence, first the final states for the table
and sink are declared:

table status:

bowl: 1

obj_id: 0 model_id: 18851

x: -0.0432 y: 0.0075 z: -0.0212

glass: 1

obj_id: 0 model_id: 18849

x: -0.2226 y: 0.0148 z: -0.0164

sink status:

bowl: 0

glass: 0

As it can be seen the final state is one bowl and one glass
in specific positions on the table, while the sink is empty.
After the final states the actual sequence of primitives is
listed

actions:



Fig. 5. Screenshots from the second perform phase test. After having
watched the initial status of the furniture, the platform shifts the bowl
(already on the table) to its correct position, then performs pick and place
on the glass.

Fig. 6. Meshes of the object used for the tests in the real life scenario.

type: begin

x: 0 y: 0 z: 0

withobject: 0

furniture: no_furniture obj_id: 0 model_id: -1

type: pick

x: -0.1326 y: 0.0051 z: 0.0100

withobject: 1

furniture: sink obj_id: 0 model_id: 18851

type: place

x: -0.2226 y: 0.0148 z: -0.0164

withobject: 1

furniture: table obj_id: 0 model_id: 18851

type: pick

x: -0.0512 y: 0.0123 z: -0.0256

withobject: 1

furniture: sink obj_id: 0 model_id: 18849

type: place

x: -0.0432 y: 0.0075 z: -0.0278

withobject: 1

furniture: table obj_id: 0 model_id: 18849

From the sequence we can see that first a bowl has
been picked from the sink and placed on the table, and
then a glass has been picked from the sink and placed

on the table. It is to be noted that the positions saved
are expressed in the sink/table reference frame, so that the
sequence is independent from different table/sink positions
in the environment. While the objects positions are relevant
for the Place primitive, for the Pick primitive only which
object has been picked is meaningful for the task modeling,
positions are saved for logging reasons.

B. Performing phase test

During the perform phase, firstly, the location of the table
and the sink is showed to the platform. From that point
the task execution is autonomous. The first step consist on
checking the furniture initial states. Then the best way to
act is chosen. In this phase irrelevant and inconsistent steps
of the demonstration are removed by the planner taking into
account the initial state and the desired final configuration,
as detailed in Section IV. In the first scenario, the initial
conditions are similar to the one of the demonstration, only
objects initial positions on the sink are different. In that
case the execution map is a copy of the task map and no
modification by planner are needed. The robot executes the
4 primitives in the same exact order. First the bowl is moved
on the table in the desired position, then the same is done
with the glass. In the second test, the bowl is already on
the table in the correct position. The planner modifies the
task map obtaining a different execution map, as shown in
Figure 7. The third and the fourth primitives of the sequence
are removed, and only the first and second ones are executed.

Fig. 7. Modification of the task map to obtain the execution for the
considered perform phase. Pi and P l are respectively Pick and Place
primitives, g and b are glass and bowl. The primitives acting on the glass
are removed.

Several other experiments have been conducted to test
the task learning and planning with different setups and
different numbers of objects. During the experiments the
robot has been capable of learning, planning and executing
the task without problems. Some problems can arise due
to issues related to specific setup scenarios. In particular
the faults mainly arise because of failure of vision and
navigation systems. If the objects are placed too close the
object recognition pipeline fails in recovering exactly which
objects are on the scene and where. When carrying objects
from one location to the other, if the navigation module plans
a trajectory not smooth enough, objects can be lost on the
path. On the other hand faults due to bad manipulation are
almost always perceived and corrected online by the planner.
This is done by the planner policy to assess the effect of



every primitive executed by the robot and compare its result
to the desired one.

VI. CONCLUSIONS AND FURTHER WORK

In this paper we presented a ROS integrated architecture
for learning complex manipulation tasks from only one
user demonstration. To tackle the task segmentation problem
we introduced vocal cues, which guide the learning phase.
A planner is included in the architecture to increase the
robustness of the approach and deal with task generalization
issues which cannot be inferred from one single task demon-
stration. The performance of the system have been tested in
a kitchen-like environment with the tasks of setting up and
clearing a table as workbenches. After the learning phase
the system has been capable of autonomously executing the
learned tasks, starting from different initial states. During the
execution of the task some choices of the planner can lead
to more or less time-consuming solutions. For that reason,
future developments will regard the capability of the planner
to take into accounts also variables like cost functions. Those
variables will be taken into account during planning phase,
and if more execution possibilities are available, chosen
indexes will be minimized.
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