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Example of planner state machine (pick and place set)
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We present an architecture to learn and replicate households
manipulation tasks by one demonstration.
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execution to different initial environmental-conditions and

possible in-task variations.

Problem and Goal: v

* High-level representation of the skill (primitives) Example of planner action starting from a Learning Map

* The problem iIs usually approached using multiple
demonstrations [1, 2, 3] or with one demonstration using
a-priori knowledge extracted from preliminary
demonstrations [4].

* Improving efficiency by allowing the users to program new
behaviors on the fly (1 demonstration).
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« Task is segmented through user interaction
* Generalization is achieved during execution through

primitives, instead of statistical representation Experimental Setup
« Action Primitives, e.q. KUKA YouBot
* Equipped with 2 Kinect Cameras
PA = {pf, ..., pa} = {pick,place, ...} Kitchen-like Environment
 The chosen tasks are setting up
» Action Primitives are inferred after every demonstration and clearing a table for one person
step from the changes in the environment state or more
Learning Test #1.
S} —{ 3?0131 5532 1?0";” } Ste1 = pA(Sk, 05 (k), poss(k)) The robot learns to set up the table
for one person
« A strip-like map of the task Is obtained and saved Performing Test #1.:
The table is set up from 2 different
Task planning and execution (online planner) environmental configurations

An Integrated state-machine provides a new ad-hoc Execution
map that follows the task representation by adapting to
environment state.

* Analyses the representation of the task and rearranges it
taking into account the end goal, the actions order and
possible new initial conditions

* Provides the robot with a action-fault tolerant behavior
during the execution of the task. Every Action primitive
effect Is verified before proceeding in the execution.
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* |Improvement of the navigation system robustness
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