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Abstract—Recent innovation in embedded computing systems
has allowed a new generation of smart devices and home
appliances, such as tablets, smartphones and smartTVs, with
embedded complete computing and networking capabilities for
a more intuitive and functional operation. In this paper we
present a novel approach for the control of haptic devices,
where control, interfacing and networking capabilities are fully
embedded into device electronics. The design and development is
based on a dual core processor, separating the execution of low-
level controls and high-level application layers, and a network
controller supporting basic services and an embedded light web
server interface. The approach allows us to fully operate the
haptic device through network and the Web without the need
of any additional hardware or software. In what follows we
show the design guidelines, the physical implementation and the
achieved results of the proposed device. The improved usability
and flexibility of the system are presented through sample haptic
rendering demonstrations.

I. INTRODUCTION

The idea of networking robots and haptic interfaces is not
new at all. Internet based teleoperation[1], [2], has been a
hot-topic for about twenty years. In these systems, however,
the use of the network was intended roughly as one possible
choice among the different available transport layers. Still
these system required pre-shared knowledge among master-
slave nodes, and specific driver setup at each side to make the
teleoperation system operating correctly [3].

As an extension of the pure teleoperation approach, the use
of Internet communication was applied to the sharing of haptic
information. In 1998, Basdogan [4] and Wilson [5] experi-
mented different types of collaborative haptic environments
which used the network to share additional information about
the physical behaviour of the haptic interaction.

In 2004, Ishibashi[6] proposed the simultaneous manipula-
tion of digital objects through a set of cooperating devices
(Sensable PHANToMs) that interact through separate work-
stations which were coordinated by a common server (named
MAESTRO). Using four nodes connected in a local network
this system achieves a typical communication delay close to
10-15 ms. Other approaches for integrating haptic interfaces
on the Web where based on specialized plugins of the Web
browser like in one of our previous works [7] and [8].

However, these systems get usually integrated through the
support of one or more PC-based setups that provide the proper
networking interface (e.g. [9]). According to this approach a
computing server is dedicated to handshake the device haptic
information through the Web.

All these approaches are based on the assumption that the
haptic interface embeds a limited intelligence mostly to solve
the local kinematic equations and to regulate the motor actions
in response to the required force command sent from the
application.

In this paper we describe how to support, within the low-
level controller of an haptic interface, the required system
integration for removing the need of an external workstation.

In our approach the embedded system integrates different
service levels including: the low-level control of motor drivers;
the high-level control of the whole robotic structure (such as
kinematics, dynamics, calibration and weight compensation);
the communication profiles to serve or command remote
network clients/hosts; a Web server to facilitate the access,
discovery, setup and control of the device; a set of JavaScript-
based Web pages to control advanced behaviors and embed-
ded on the remote device all the software and control loop
required for controlling the haptic response. In particular the
controller provides three types of haptic interation: motion
control (position-velocity and position-force), haptic rendering
of basic shapes and tele-operation.

The proposed controller can be operated through an au-
tonomous Web interface, and it is smart enough to self-
configure in a local network when multiple devices are present.
For instance, as soon as two devices are available they may
inter-connected each other and self configure themselves to
operate as a master-slave tele-operation system.

The protocol adopted improves over existing peer-to-peer
compliant system, like [10], [11], because it overcomes
the need for a central processing unit and also provides a
higher flexibility in the architecture, which in turn allows an
unbounded number of devices to be connected together.

The paper is structured as follows: first the hardware setup
is presented covering the haptic device and the computing
system. Then the control architecture is covered. The fourth
section discusses the software architecture. Finally the paper
is closed by a demonstration setup and conclusions.

II. HARDWARE SETUP

The controller has been tested on a pair of existing high-
performance haptic devices: the GRAB interface [12]. Each
device, shown in figure 1, is a 3 DOF (RRP) with spherical
kinematic, designed with the specific aim of improving the
transparency of the final haptic interface in terms of low per-
ceived inertia, friction, backlash, and accurate force feedback
[13].



Fig. 1: Overview of the GRAB [13] haptic interface integrated
with the proposed electronic controller.

The computing system is designed to separate the man-
agement of the low-level real-time haptic control from the
networking and user interface. It is based on a recent Texas
Instruments (TI) dual-core heterogeneous processor which
allows us to decouple control from the high level logic: one
core is a 150MHz 32-bit C28x DSP processor, specialized
for control,(a 75MHz 32-bit Cortex-M3 ARM processor)
provides to manage higher level services. The 32-bit ARM
core provides a variety of communication interfaces including:
Ethernet, USB full speed, SD memory card access and high
speed serial communication. The 32-bit C28x core floating
point DSP provides a single precision FPU together with motor
control features, such as PWM signal generation, Quadrature
Encoder interfaces, digital I/O, 12bit ADCs, and enhanced
capture modules (eCAP). In the following we will refer to
the two cores as the DSP and ARM-CPU.

The device is actuated by three Brushed PM-DC motors,
which are directly controlled by the proposed controller
through three separate H-Bridges ICs (ST VNH5019). The mo-
tor driving is achieved with a 20KHz PWM signal generated
directly from the DSP pwm modules. The position sensing
is performed through high resolution quadrature encoders
(HEDL 5540) mounted directly on the motor shafts

Figure 2 shows an overview of the system modules and
connections. In a general application the small-sized electron-
ics can be wired close or embedded into the haptic device,
resulting in a final system needing just a power plug and an
Ethernet or USB cable for working.

III. CONTROL ARCHITECTURE

In order to optimize the computing resources with respect
to the required low-level real-time control tasks and high-level
networking and interfacing tasks, we assigned to the DSP
core the role of taking care of the sensor readings, actuators

Fig. 2: Overview of the system modules and connections.
Relevant control parameters are shared between the DSP
and the ARM-CPU cores controller using a shared memory
mechanism. The ARM controller implements a web server
and provides to generate a local haptic response loop which
reacts to networked commands.

management and the low level control. The ARM-CPU core
was instead delegated to high-level control and communication
protocols.

This choice allowed us to ensure by task separation the
safety and robustness required by the control loop, and the
flexibility and computing resources required by the network
interface. Tasks related to the control loop implemented on
the DSP core, could be allocated and executed in a predictable
way. Conversely, we delegated all unstructured operation, such
as those deriving from the network servicing to the ARM-CPU
core, whose response time is not affecting the hard real-time
control of the DSP operation.

The DSP core was programmed to operate in different three
switchable low-level modalities: position, velocity and force,
modified with the selection of two reference systems: end-
effector (EE) and joint (q). The conversion between EE and
joint references was internally achieved through the compu-
tation of the transposed Jacobian for the EE reference[14].
The velocity and position control were implemented with two
nested proportional-integral (P-PI) control loops.

The resulting control algorithm is shown in Figure 3 where
Kr represents the motor-to-join matrix that maps joint torques
to motor ones. Safety algorithms were also implemented onto
the DSP side: the control algorithm monitors that the absolute
position/force/velocity is kept below a given threshold. A
finite-state-machine structure allows to safely recover from
protection faults and to manage specific startup procedures
such as automatic position calibration and device reset.

The connection between the two cores has been obtained
through a synchronized double-buffer shared-memory tech-
nique. High-level control from ARM-CPU to DSP cores is
obtained by transferring the chosen modality and the related
reference variables. The ARM core writes in the synchronized



Fig. 3: Low-level control architecture

shared memory the requested modality, the parameters and the
reference signals. This information is examinated by the finite-
state machine to ensure coherence among different commands,
then forwarded to the respective control loops. Once the
information is gathered from the sensor accessible to the DSP
core, the respective joint (end-effector) position, velocities are
copied back in a different shared-memory area.

Three high-level modalities are detailed as follows de-
scribing their functionality, related low-level modality and
communication:

1) Velocity control is used during early calibration phases
in which the robot is controlled to move at constant
speed toward some reference mechanical stops that help
to uniquely identify the device posture

2) Haptic Rendering. The system renders a force at the EE
which is computed on the basis of the actual EE position.
In this case the low-level EE force control modality is
enabled on the DSP core. A local server accepts EE
force references in two ways: using Ajax with persistent
connection [15] or through UDP datagrams. Using a
local network an averaged closed-loop rate of 100Hz
has been achieved in the first case , while 2 kHz has
been achieved with direct UDP communication.

3) Teleoperation mode is used when two haptic de-
vices are interconnected. Both devices share their po-
sition/velocity/force information to implement a wave
variable based control as described also in previous work
[3]. In absence of delays (less than 1 ms), the whole
system behave ideally as if a virtual spring is connected
between the EE of two devices, with a stiffness that can
be set through position controller parameters.

IV. SOFTWARE ARCHITECTURE

The architecture of the system is characterized by the distri-
bution of the different services between the two heterogeneous
cores of the control board and external computing nodes.
Given the distributed computing architecture of the proposed
system, the haptic rendering part can be computed on several
locations (CPU) depending on the computing requirements,
the network limitations and programming complexity.

Figure 4 shows three different approaches. In the first
approach the rendering is performed inside the DSP, ensuring
the shortest delay and most predictable performance, but with
inherent limitations in the flexibility. This solution requires
in fact that the force (position or velocity) profiles should be
encoded within a rigid (and predictable) coding algorithm. In
the second approach the force rendering is being computed on
the ARM-CPU, and is provided as an additional Web server
feature that closes the loop locally. In this approach the force
delay is very short and the latency only depends on the shared
memory synchronization.

The last approach is the typical configuration in which the
force rendering is performed on a remote node external to the
micro-controller. In such a case we may add the benefit of
control versatility, but this come with networking bandwidth
and latency limitation. Among the possible benefits of this
approach we mention the possibility to interface the device
control directly with Web browser application and without any
plugin or driver.

Below we describe the services that are made externally
available through the Ethernet interface and managed by the
ARM-CPU core. Then we present the performance results on
the UDP communication and finally the more sophisticated
structure for the HTTP communication.

Two communication channels have been provided over the
networked interface: HTTP over TCP and a simple protocol
over UDP. The former provides the access to resources and
to services embedded in the haptic interface, for configuration
and for high-level control, while the latter provides support
for low-latency inter-device communication. Figure 5 presents
the overall organization of the communication, comprising the
possibility of interconnecting several devices together.

Fig. 4: Different possibilities for the haptic rendering con-
figuration with the proposed architecture. Remote web-client
rendering (top); DSP low level rendering (middle); and ARM-
CPU Rendering (bottom).

A. Services

The ARM-CPU masters all the services and manages the
slave DSP core. We integrate on this core a set of task to
control several activities such as: the handling of a com-
plete file system, stored in an SD card, which contains the
Web server pages; a basic USB flash-disk communication
to manage, upload and update the Web server pages as if
they were in a disk local to a remote PC; Ethernet low level
handling; Web server with file serving from the SD card and



Fig. 5: Overall system and communication architecture. The
haptic interface is described in terms of its connection with
other haptic devices or with external computing nodes. The
main communication channel with other devices is UDP,
supported by HTTP for handshaking and communication.

AJAX interface; UDP server for handling low-latency haptic
requests and information exchange with the DSP core. All
of these services have been implemented on the ARM-CPU
by using open source libraries, without any operating system
layer. In particular lwIP [16] has been chosen for TCP and
UDP communication over Ethernet and FatFS for SD card file
system handling. A HTTP 1.1 Web server has been specifically
developed over lwIP for this project and it will be contributed
to the community being almost independent of the specificity
of the controller interface.

V. UDP COMMUNICATION

When configured in tele-operation mode, the two GRAB
devices communicate with each other using the UDP protocol
thanks to the augmented performances: UDP packets (with
error control over integrity) provide a fast and flexible way to
implement multi-point communication as needed when more
than two devices are working together. In our tests, using a
2GHz dual core PC running a Python server over Windows 7
32-bit OS, we managed to exchange a 50 bytes-packet payload
at a roundtrip frequency of 2 kHz. All packets waited an
acknowledgment answer before re-transmission, thus ensuring
a minimum effective a bandwidth of about 100 kBs, with
an averaged latency lesser than 500uS. These performances
were achieved both when the board was connected peer-to-
peer to the PC and when the connection was done through the
lab Gigabit switched LAN. The protocol implemented over
UDP, being the focus of direct communication between haptic
interfaces is quite simple, and characterized by get/set pairs
for controlling different variable.

A. HTTP Communication

The lightweight Web server has two roles: static content
serving and AJAX requests. The static content is served by
accessing the files stored on the SD card of the system, thanks
to the FAT file system handler. The AJAX service allows to
read and write a large number of configuration parameters and

real-time values like position of the end-effector, joints and
forces. The AJAX service exposes as HTTP GET requests
the possibility to read or write variables specified as query
parameters. The write command allows not only to obtain
confirmation of the writing operation but also to return the
status of other variables. Each response is encoded using the
JSON protocol (IETF RFC4627).

The implemented protocol allows any web client having
scripting capabilities to interact with the controller. In such a
way, the device itself provides to the client all the required
software to run basic interaction programs.

A particular care has been given in the implementation
of the protocols to minimize the computational cost and
improve throughput. The CPU core has a very limited memory
amount, hence we decided the server to implement the HTTP
1.1 protocol that allows multiple requests on the same TCP
connection. As a result performances improve several times
when delivering both static content and AJAX requests.

The controller reached 150Hz on the local network while
serving AJAX requests with total packet request payload of
about 200 bytes. If using the HTTP 1.0 connection the rate
decreases 10-20Hz due to the TCP handshake and the overhead
of the HTTP headers. In the design of the system we also
evaluated other HTTP connection schemes like the recent
WebSockets standard (IETF RFC6455), that, after an initial
security handshake allow to exchange data in a bidirectional
way by means of messages. The other option of HTTP 1.0 with
MIME multi-part replace, as used by some M-JPEG servers,
has not been tested.

JSON introduces an overhead of about 20 bytes on every
request and response, but everything fits well in the MTU
of the communication. JSON has been preferred over binary
forms of JSON, or other protocols, to increase portability and
human readability.

For assessing the quality of the communication when trig-
gered from inside the browser we tested the execution of
1000 requests from the Google Chrome (release 32) browser
scaling from one single connection to up to 6 concurrent
connections. The results span from 58Hz in the best condition
to 10 Hz in the worst case. This limitation is mostly due
on how the browser manages its thread priority and request
scheduling. So far, the data rate was not adequate to implement
a complete force closed loop from inside the Web browser, and
its use requires specific coupling strategies as described in the
examples below.

B. Integration within a client scripting

As said, using AJAX services the user may control the
different operation modalities supported on the ARM-CPU
core. At this stage, in order to cope with the reduced closed
loop frequencies achievable within modern browser, the ARM-
CPU core also implements basic haptic rendering of implicit
entities: shapes render, damped springs and planes.

The use of these rendering functionalities allows a single
AJAX request to exhibit complex (and robust) haptic render-
ing profiles which are internally at 1kHz between the two



Fig. 6: Diagnostics Web interface showing example data sent
from the device during a test

controller cores.
Using such functionalities we implemented several teaching

demos on the embedded website. These demos take advantage
of modern standards for fast graphics like HTML5 and We-
bGL, and the power of recent JavaScript libraries, like jQuery
[17] , that allows rapid design development. In the next section
we will show in practical examples how these technologies
can be combined to achieve effective and interoperable haptic
demonstration. The web server also hosts all the required web
pages to monitor any device functionality or trigger specific
interaction modality (such as the embedded teleoperation) as
show in Figure 6.

VI. DEMONSTRATION

To assess the controller capabilities we developed two
different demonstrations, both deployed on the web as HTML5
pages without plugins. First a haptic plane rendering where the
graphical part is implemented by means of the HTML5 3D
capabilities provided by the WebGL API, that is a JavaScript
interface to the OpenGL ES 2.0 standard. Higher level func-
tionalities have been obtained over WebGL by means of
the Three.js library. In this demonstration the Web browser
receives the haptic position and the forces generated by the
implicit plane renderer to display updated information within
the 3D canvas. Figure 7a shows a snapshot from the running
system where the haptic position is represented by the sphere.

The second test application, shown in Figure 7b, is an
adaptation of a physics demo based on the JavaScript port of
the Box2D physics library. We adapted an existing non-haptic
enabled application to identify the challenges of haptically
extending it within our framework. The original demo was
enhanced adding a coupling connection with the GRAB in-
terface, handled through the implicit spring model. The demo
presents a L-shaped object fixed at a joint over which several
balls and boxes are falling. The haptic coupling to the EE was
attached to right side of the shape (square marker) and used
to add balance force within the physics. In this way the user
was able to control the lever. By using a provided wrapper

(a) The plane render (avg. freq 100 Hz)

(b) the coupling contact (avg. freq 66Hz)

Fig. 7: Demonstration scenarios. In both cases the objects in
the canvas move accordingly to user interaction. For debugging
purposes haptic statistics from the device are shown on the top.

included at the beginning of the Web page, the changes of the
original application were in the order of a dozen of lines of
codes.

VII. CONCLUSIONS AND FUTURE WORK

We presented a novel type of embedded haptic controller
that allows the integration in a networked environment. The
approach allows to fully operate the haptic device through net-
work and the Web without the need of any additional hardware
or software. The controller embeds two different servers (UDP
and HTTP), that directly exploit all the capabilities of the
device without requiring any installation procedure, moreover,
the overall system can be used from any operating system. The
combined use of the Web interface with scripting technologies
facilitates the development of teaching applications, and the
use from any remote client such as cell-phones or tablets.

The controller presented here offers several opportunities of
investigation in the way haptic interfaces can be programmed
and interfaced with other devices and applications. First ,in
the direction of mobility, by allowing to integrate wireless
communication and haptic controller. This allows the creation
and exploration of new haptic applications combining mobile
technologies and grounded haptic devices, like, for example,



augmented haptics. The JSON approach could allow the
system to interoperate with more complex robotic setups as
provided by the Robotics Operating System (ROS) through
the rosbridge [18], that maps ROS messages to JSON. Second,
in the direction of interoperability, allowing the creation of
cooperative devices that increase discoverability through the
adoption of standard protocols such as Universal Plug and
Plan (UPnP) or multicast DNS (mDNS). Third, the aspect of
security, to prevent or exploit the activation of the application
in relation to specific access algorithms. Finally, in the domain
of haptic rendering to support more sophisticated implicit
rendering algorithms that overcome the present performance
limitation in current browser technologies.

A video of the working system has been uploaded at this
location: http://youtu.be/WULoIM54s9Y.
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