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Abstract— This paper presents a task learning technique with
haptic and visual feedback, along with experimental results.
Haptic feedback is achieved by means of a embodiment in
the Arm Light Exoskeleton ALEx, and visual feedback is
given through immersion in a Virtual Reality environment.
The proposed approach is assessed by means of a between-
group evaluation on ten subjects, comparing different kinds
of feedback for learning a series of motor tasks. At present,
experiments are ongoing.

I. INTRODUCTION

Motor learning of new tasks is an important aspect of
research in sport and robotic rehabilitation. A key advance-
ment in this domain has been provided by real-time motion
tracking and feedback that allow to provide instantly the user
with cues for improving performance. The policies and the
technology for generating such a feedback have important
effect on the learning rate, and on the ability to transfer the
learned motion to the real world. Physical feedback applied
on the user limbs can be provided by means of wearable
haptics technology with interesting results. One type of
haptic feedback is based on vibrotactile stimulation obtained
by vibrating motors applied on different body locations [18],
[22], [4]. The alternative approach is provided by kinesthetic
feedback in which force is directly exterted on the body of
the subject, typically in one single point or through an object
tool. Wearable haptics interfaces such as exoskeletons allow
to overcome the typical limitation of workspace and trans-
parency found in desktop haptic interfaces. An exoskeleton
is an external structural mechanism with joints and links
theoretically corresponding to those of the human body.
The diffusion of exoskeletons, also called wearable robots,
is significantly increasing in recent years. Some relevant
examples of upper limb exoskeletons in the literature are
ABLE [9], Armeo [10], MGA [14], L-Exos [8], Armin [16],
Carex [15], ARMON [11], HE [7] and [1], [19], [21], [17].

The combination of haptic and visual feedback in immer-
sive environments, is promising in supporting the learning
of new tasks thanks to the multimodal feedback generation
[20]. In particular immersive environments allow to provide
feedbacks that maximize the learning process [6] overcoming
real-world limitations.

Immersive visual feedback and sophisticated wearable
haptics can be combined creating an embodied environment
for motor learning. The contribution of this paper is the
proposition and experimental test of a task learning technique
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Fig. 1. ALEx exoskeleton and a user wearing it.

with haptic and visual feedback, featuring embodiment in an
arm exoskeleton and a virtual reality scenario.

II. MATERIALS AND METHODS

Experiments have been carried out using the Arm Light
Exoskeleton ALEx [2], [3], depicted in Figure 1. ALEx is
an arm exoskeleton with remotely actuated joints. Motors are
inside a backpack, and they are connected to the joints by
means of tendon transmissions. ALEx features six degrees
of freedom (dofs):

• shoulder abduction/adduction;
• shoulder rotation;
• shoulder flexion;
• elbow flexion;
• wrist prono-supination;
• wrist flexion.
The rotation of the shoulder is achieved through a remote

center of rotation mechanism. The first three rotational axes
are incident and mutually orthogonal in order to emulate the
kinematics of a spherical joint with the same center of rota-
tion of the human shoulder. The first four dofs are sensorized
and actuated, while the last two dofs are sensorized only.
Optical incremental encoders are integrated into the motor
groups, and absolute angular sensors are directly integrated
in the joints. There are no force sensors.

To physically interact with the exoskeleton, the user puts
his/her wrist in a reference ring and grabs a handle (see
Figure 1). ALEx features 95% coverage of the natural
workspace of the human arm, and the mass of its moving
parts is less than 4 kg. ALEx exerts up to a maximum of 50 N
continuous force, with 100 N peak force. A novel version of
ALEx featuring a new actuation paradigm proposed by our
group [12], [13] is also being developed: being the actuation
system of ALEx located remotely, only the backpack is
replaced.





Fig. 2. User moving its own virtual arm using the ALEx exoskeleton and
the Oculus Rift.

The virtual environment is based on the XVR [5] frame-
work enhanced with the support of real-time virtual human
and interface with the ALEx control system. The visual feed-
back is provided through the Oculus Rift HMD providing a
first person perspective of the user that is capable of seeing
its own body as in Figure 2.

The learning task features a feedback based on physical
presentation of the motion that has to be performed by means
of the haptic feedback of the exoskeleton from a recorded
trajectory, and then visual feedback with “ghost effect” over-
imposed on the virtual arm for guiding the motion of the
subject. The assessment of the proposed approach is based
on a between-group evaluation on ten subjects, comparing
haptic-only feedback with visuo-haptic feedback for learning
a series of motor tasks, such as moving objects from different
locations along a trajectory.

Experimental results will be included in the final version
of the paper.

III. CONCLUSION

We proposed a task learning technique involving embodi-
ment in the ALEx exoskeleton and immersion in a virtual
reality environment, providing haptic and visual feedback.
Experiments are still ongoing.
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