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Abstract—The use of drones in agriculture is becoming more
and more popular. The paper presents a novel approach to dis-
tinguish between different field’s plowing techniques by means of
an RGB-D sensor. The presented system can be easily integrated
in commercially available Unmanned Aerial Vehicles (UAVs). In
order to successfully classify the plowing techniques, two different
measurement algorithms have been developed. Experimental tests
show that the proposed methodology is able to provide a good
classification of the field’s plowing depths.

I. INTRODUCTION

The continuous growth of the world population together
with the lowering of resources at disposal pose the problem of
smart usage of resources. This is very important especially
in the field of food production and soil exploitation. The
common methods used in agriculture to analyze and assess
the correct production and usage of resources employs optical
and multispectral techniques applied to photos captured from
satellites. These techniques allow to assess the health state
of farmings; for instance the light absorption from the leafs
displays the presence of chlorophyll. This is a critical and
important phase since the results of these phase will affect the
decisions of interventions on the feeding of the soils, the pro-
tection from insects/fungi or if other countermeasures should
be taken. The more frequently this kind of analysis is done,
the more responsive and thus accurate the countermeasure will
result. On the other hand this activity is time consuming if held
by hand and satellite-time dependent if done by this kind of
technology.

In the last years, there is a growing interest in the use
of autonomous techniques for inspecting the health state of
farming. Robotics jumped into this field providing interesting
and effective solutions to several phases like harvesting or the
plowing [1]. Compared with the satellite technology, the use
of drones in agriculture and in smart farming is very effective
due to the fact that unmanned aerial vehicles (UAV) can give
farmers a bird’s eye view of their fields still remaining close
to the terrain and so providing more precise evaluations.

In particular, the use of drones does allow the opportunity
to get an overall survey of the area and make a better use of
farmer time, rather than just making him/her walk out blindly
into a field that could be taller than his/her head, hoping that
he/she stumble across any of the problem areas that might be
in the field.

Fig. 1. Pre-programmed navigation trajectory for the soil assessment in the
APM Planner open-source software.

Recently, to protect the natural ecosystem of farming fields,
the Italian Tuscany region has given subsidies for the lavoration
of small fields, giving prizes to farmers which will reduce the
fields plowing depth by changing their plowing techniques.
This direction looks promising and will be taken over probably
by other regions and countries in the next future. To be able
to assess directly the effective usage of the soils, satellite
images could not be sufficient or should be validated at
least from a closer inspection method. For this purpose, our
work aims at developing a system capable of analyzing the
soil condition with a rapid flight. The idea is to approach a
correlation between radar (or satellite) acquired parameters and
soil roughness values obtained from RGB-D cameras or laser
scanners.

The paper is divided as follows: next section will introduces
a brief description of the state of the art solutions. Section
III will give a general overview of the system architecture.
In section IV the data acquisition method is presented and
analyzed in section V. Section VI shows the results of the data
analysis procedure and finally section VII reports the paper
statement together with conclusions and future development
of the project.

II. STATE OF THE ART

Optical satellite images require specific time slots to be
acquired and usually are quite expensive; for this reason a



radar image solution is more suitable. Radar images allow
to distinguish between a tilled and not tilled soil [2] but
the ability to classify different types of tillage is yet not
proven. It is instead impossible to retrieve such information
(terrain roughness) from high resolution satellite images. In
the COSMO-SkyMed project [3] 3/5 meters resolution radar
images in X bandwidth have been achieved with special
spotlight stripmap images at the resolution of 1m requiring
several acquisition phases. Usually this kind of system requires
big parcels of terrain to be effective and cannot distinguish
small cultivated fields.

The use of computer vision techniques from drones will al-
low to water or spray only where necessary applying a selective
spraying in sections of the field that need the treatmens. From
captured images it is also possible to analyze the watering
level within plants, to plan crops with precision and possibly
automate tractors.

With the help of hyper-spectral measures it is possible to
evaluate the hydraulic stress of sites classifying them based on
the stress level [4], assess the chlorophyll content [5], verify
ozone damage on leaves [6] and differentiate plant species
based on leaves properties.

III. SYSTEM OVERVIEW

The sensing technology presented in this paper is meant to
be used as part of a robotic assessment system composed of
an aerial vehicle, an RGB-D sensor and a software interface
responsible for the navigation phase and the post-processing
of the acquired data.

Many different avionics could be used to achieve the
terrain assessment. In particular, in the literature and in the
market domain, many aerial system producers propose both
fixed and rotatory wings alternatives. As an example the
senseFly company proposes an advanced drone called eBee
[7] with autopilot capabilities that can handle take-off, flight,
and landing autonomously. The eBee is also packed with a
high-resolution camera that might be useful for 3D maps with
5-10 cm accuracy.

The proposed system employs a commercial low-cost
RGB-D camera, an Asus Xtion Pro, for the visual analysis of
the soil and thus it can be employed both in a fixed-wing drone
or in a rotatory wings like a multi-rotor system. The choice
of using a commercial sensor has the advantages of being
relatively cost effective compared to a prototype solution, it
doesn’t require dedicated acquiring electronic components and
can be embedded in a large number of aerial vehicles.

Localization, navigation and mapping has been a very
active area of research lately and many works can be found
in literature on this topic [8] [9]. Without the need to employ
state of the art techniques, for the navigation goals of our
system it is necessary to employ the classic sensor fusion
technique involving GPS integration with Inertial Navigation
Systems (INS). In fact these two sensing modalities are ex-
tremely complimentary: the GPS module provides a slow-
update positional information with bounded error, while the
INS system provides unbounded integration error, but with a
fast update rate. Combining the two, it is possible to achieve
high-fidelity localization estimation.

For the purposes of our goal, this technology is sufficient
and the use of a standard Extended Kalman Filter solution [10]
for the navigation problem is advised.

Several software solutions are freely available for download
over the Internet for the automatic navigation control of drones
equipped with a GPS module. As an example of that in
Fig. 1 the trajectory performed with a Parrot Ar.drone 2.0 GPS
edition in order to completely scan a parcel of terrain is shown.

In order to collect topological data for the surface analysis
of the different fields, a point cloud [11] representation of the
three-dimensional structure of the field has been created.

The AUV should be distance controlled with respect to
the terrain; to do so a simple PID controller [12] can be
implemented using, as sensing technology, a camera (video-
based) or an ultrasound/infrared distance measurement sensor.
If due to environmental conditions the distance from the terrain
changes, the acquired point cloud should be scaled accordingly.
In such case, the point cloud is firstly used to obtain a mesh
and then scaled with respect to the acquisition distance (relative
distance between the RGB-D camera and the terrain) to make
the dimentions consistent among the different samples. A
second step would be to sample the mesh with an equally
spaced grid.

IV. DATA ACQUISITION

RGB and depth data has been acquired using an Asus Xtion
Pro sensor on three different consequent parcels of a common
field which have been plowed with different depths: the first
parcel was unplowed, Figure 2 (a), the second parcel had a
25 cm plow, Figure 2 (b), while the third parcel had a 50 cm
plow, Figure 2 (c). A short RGB-D video has been captured
for each field storing the rgb and depth data. The distance of
the Xtion from the terrain didn’t change during the acquisition
phase.

Afterwards, using the data of each stream, a point cloud
stream has been created using PCL, Point Cloud Library, and
three representing clouds for each field have been extracted.
This has been done to avoid sparse point clouds containing a
lot of obscure regions, given that the Asus Xtion Pro camera
is very sensible to sun light. To avoid this problem also a big
sun screen has been used to avoid direct lighting.

V. DATA ANALYSIS

During the acquisition phase, the camera was not facing
the terrain in a perpendicular way, resulting in a point cloud
in which the height variations ware not clearly identifiable. For
the purpose of obtaining a height field it is necessary to rotate
the point cloud accordingly. In this analysis this operation has
been carried out by applying Principal Component Analysis
(PCA) over the points in the point cloud: when applied over
3D points the PCA corresponds to finding the rotation in
which the resulting axis, called principal axis, have maximum
variance. In this case it is correct that the resulting x and y axes
correspond to some axis parallel to the terrain while the z axis
is perpendicular. The choice of x and y is clearly influential
for this application.

After the PCA rotation the point-cloud has been then
transformed into a uniformly sampled height field by means



Fig. 2. Images of the 3 field’s parcels used in the analysis. (a) Unplowded parcel (b) 25cm plow depth (c) 50cm plow depth

of Delaunay triangulation. The resulting height-field for the
three plowing depths is shown for one sample in Figure 3,
4, 5. The result of the pre-processing is a height-field over
which two different measures have been used for plowed state
discrimination.

To obtain two discriminating parameters a two dimensional
Fast Fourier Transform (FFT) has been applied to the Z axis
and then the power spectral density (PSD) has been computed
for each sample as shown for example in Figure 6, 7, 8 from
which two values have been extracted:

• The maximum of each fft of each sample has been
extracted and the mean value has been calculated
obtaining the results shown in Table I

• The mean power of each fft has been calculated and
then the mean value for each field has been extracted
and reported in Tabel II

Fig. 3. Unplowded field mesh after the pre-processing step

VI. DATA EVALUATION

The first and second extracted measure show that there
is the possibility two distinguish between the three fields; the
calculated values have three different ranges, having the lowest
values for the plain field, high values for the 25cm field and
intermediate values for for the 50cm field.

Fig. 4. 25cm deep plow mesh after the pre-processing step

Fig. 5. 50cm deep plow mesh after the pre-processing step

VII. CONCLUSIONS AND FUTURE WORK

The presented work describes a vision-based technique for
the analysis of soil characteristics. In particular the method
has been employed in the plowing type discrimination and



Fig. 6. Unplowed field fft power spectral density

Fig. 7. 25cm deep plow fft power spectral density

Plow depth Mean Variance
plain 11.00 8.00
25cm 47.28 28.45
50cm 21.75 9.45

TABLE I. VALUES OBTAINED USING THE FIRST ANALYSIS METHOD
FOR THE DIFFERENT PARCELS.

Plow depth Mean Variance
plain 1, 23 × 104 2, 50 × 103

25cm 2, 53 × 104 3, 94 × 103

50cm 2, 05 × 104 4, 56 × 103

TABLE II. VALUES OBTAINED USING THE SECOND ANALYSIS METHOD
FOR THE DIFFERENT PARCELS.

the solution has been tested on field. The experimental results
prove the feasibility of the proposed approach as terrain
classifier. The software is able to discriminate among three
different plowing depths which are in this case plane, 25cm,
50cm.

Future work will focus on the installation of the sensing
component on a UAV and in the substitution of the actual Xtion
Pro sensor with the new Kinect v2.0 that allows a greater
resolution and does not present interference with daily light
emissions. This could bring also the possibility of having the
UAV flighing at a higher distance from the field and scanning
a bigger areas in the same time w.r.t. the Xtion Pro sensor.
The main disadvantage of the kinect v2.0 relies in the fact
that it needs more space to be installed on an UAV system,
an increased payload capability, and the need of an external

Fig. 8. 50cm deep plow fft power spectral density

power supply given that it is not USB powered.

Another improvement will be to embed on the UAV the
whole computing system (vision + navigation + data analysis)
using a mobile GPU. The re-orientation technique based on
PCA has a O(m×n2) cost, with m number of point, n fixed as
3, meaning that the algorithm is linear in the points, and it can
be easily parallelized on GPU, while Delaunay triangulation
has a complexity of O(nlogn). In addition the re-orientation
can be integrated by sensor fusion with the inertial unit of the
UAV.
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