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Work-related Musculo Skeletal Disorders (WMSD) are considered the third main reason for disability
and early retirement in the U.S. and are widespread in many occupations, involving both heavy and
light biomechanical loads. In Italy, only taking into account the years 2009—2010, it is estimated an
exponential increasing in the number of WMSD reports. In particular a 159.7% increment has been
reported compared to the 2006 statistics. In this context, it is clear how important correctly diagnosing
this kind of pathology is becoming. Traditional methods for WMDS assessment are based on obser-
vational techniques, in which experts manually segment, label and evaluate movements with the help
of pro-forma sheets. Since these methods are currently based on visual inspection and subjective
judgment, they could benefit from objective measurements in terms of both reliability and repeat-
ability. Moreover an automatic tool for ergonomics assessment would vastly reduce the time that an
expert needs to carry out the same assessment manually. In this context a novel wearable wireless
system capable of assessing the muscular efforts and postures of the human upper limb for WMSDs
diagnosis is proposed. The system, being non-obstructive, can be used to monitor workers in ecologic
environment while they are carrying on their everyday tasks. A real-time assessment is obtained ac-
cording to two of the most common indexes for the analysis of risk factors on workplaces: the Rapid
Upper Limb Assessment (RULA) and the Strain Index (SI). The system exploits inertial measurement
units (IMUs) to reconstruct the upper limb posture, modeled as a 7 degrees of freedom (DoF) kinematic
chain. As far as muscular efforts are concerned, surface EMG sensors are used to assess forearm flexor
muscles strain. As an example of the proposed system application the results of a first data collection
campaign regarding super-market cashiers during everyday real-life operations is reported.Relevance to
industry: The presented system has a high potential impact on industry as a timely intervention on the
WMSD factors may reduce pathologies and reduce the recovery of expert workers.

© 2015 Published by Elsevier B.V.

1. Introduction

the main concern for workers health and safety. The growing in-
terest on WMSD is explained by the increase of case reports and by

According to international statistics, in the last years Work- the impact of WMSD on industry production.
related musculoskeletal disorders (WMSDs) have become one of In particular, according to the Italian government agency for

the insurance against work-related injuries, WMSDs, differently
from other work-related injuries, have shown a constant growth
as it is shown in Table 1 (Italian Government Agency for Injured

* This work has been developed inside the project ERGANE supported by the
Ministry of Health CCM, in collaboration with ASL Viareggio. Workers (AMNIL), 2013). More recent data show a further
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increase of approximately 4.000 cases (+15%) with respect to
2010 (Italian Government Agency for Injured Workers (AMNIL),
2013).

WMSDs usually arise from common movements, such as lifting,
intensive keying, forceful pinching and gripping, that are not
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Table 1

WMSDs incidence for the 2006—2010 years interval (Italian Government Agency for Injured Workers (AMNIL), 2013).

Type of WMSD 2006 2007 2008 2009 2010 Var. % 2006—2010
Vertebral disk diseases 2.828 3.276 4.130 6.629 9.368 231.3%
Tendinitis 3.124 3.842 4.461 6.036 8.525 172.9%
Carpal tunnel syndrome 1.731 1477 1.668 2435 4.819 178.4%
Arthrosis 1.588 1.938 1.965 2.343 1.971 24.1%
Others 795 907 886 1.057 1.455 83.0%
Total 10.066 11.440 13.110 18.500 26.138 159.7%

particularly harmful, but that become hazardous in specific work
situation in which several repetitions of these movements are done
without sufficient recovery time or they are done too fast.

Risk factors are usually classified into three main groups: indi-
vidual, psychosocial, and physical. Examples of individual and
psychosocial factors are: job-related stress and dissatisfaction, low
organizational support, high work demands.

Considering the physical category the most influential causes
are recognized to be workload in repetitive activities and body
postures (Aaras et al., 1988; Forcier et al., 2008; Kilbomet al, 1994).
For that reason, traditional techniques for assessing WMSDs focus
in particular on observing the angular deviation of a body segment
form its neutral position, force exertion, and repetition. Those
techniques can be gathered in three groups: self-reports, observa-
tional inspection or by instrument-based techniques (David, 2005).

Self-reports methods usually consist of questionnaires that must
be filled by the monitored workers. Those methods are straight-
forward and easy to use, but are prone to give a distort information
due to the subjectivity of the worker perception. Moreover, factors
affecting self-reports answers are eventually pre-existing MSDs
and psychosocial factors.

Observational inspection consists of the visual analysis of
recording observations with the help of pro-forma sheets. This
family of methods focus mainly on postural observation, workload
or a combination of the two. Among these methods the Rapid
Upper Limb Assessment (RULA) (McAtamney and Nigel Corlett,
1993), which assesses biomechanical and postural loading on the
human body focusing mainly on neck, trunk and upper limbs, is
one of the most used. Other examples are the NIOSH Lifting Index
(Waters et al., 1993) and the Job Strain Index (SI) (Steven Moore
and Garg, 1995). The first evaluates the risks related to manual
handling of load during lifting tasks, while the latter focuses on the
muscular effort component focusing on the wrist-hand complex,
and gives a net threshold to rank the risk factors of different jobs.
Being practical, inexpensive and not intrusive, observational
methods can be used in several workplace conditions, but they
heavily rely on the analyst's skills in terms of evaluating quanti-
tative parameters such as joint angles and loads displacement by
visual inspection. For this reason the introduction of a measure-
ment tool to capture some or even most of the parameters involved
in the calculation can greatly enhance the exploitation of these
methods.

Instrument-based techniques rely on direct measurements
from sensors attached to the workers body. Since it is crucial to
minimize the disturbance caused by instrumentation to the user,
the most used solution are wearable and hand-held devices. Very
common solutions employ motion capture devices to reconstruct
the body posture. Vignais et al. (2013) presented a wearable body
sensor network composed of inertial units and goniometers. The
body posture is assessed with a 20 Degrees of Freedom (DoF)
biomechanical model and joint angles are used for the RULA
assessment. The system is capable of giving a visual feedback of

the RULA score to the user. In this context only postural risks
assessment are considered by the method. In addition to body
posture several works monitor also force exertion and load during
the task execution. Usually this is done with grip/force sensors
(Freivalds et al., 2000) or with surface EMG sensors, which are
more suitable to measure hand and finger forces in the workplace
without interfering with a worker's normal movement patterns
(Mogk and Keir, 2006). In fact, in a comparative study of Trask
et al. (2007), several different methods are taken into accounts
(observations, interviews, EMG, inclinometry, and vibration
monitoring) showing the capability of EMG monitoring equip-
ment to provide data focused on only one risk factor, but with a
very high level of detail. Moreover several metrics (mean, peaks,
percentiles, cumulative exposure, rate of change) can be investi-
gated through EMG, with the downside of being a costly solution
compared to traditional observational methods. EMG can be used
as a tool for non-standard assessment (Spyropoulos et al., 2013;
Segaard et al., 2001). In the first case the authors employ video-
based tracking methods to capture kinematic parameters and
surface EMG sensors to define possible indicators of fatigue
accumulation for the shoulder. Two lifting tasks, with different
ranges are analysed during common operations in a supermarket.
In the second force sensors are added to EMG and optical motion
tracking. Considering EMG assessment in the context of standard
scoring methods, it has been used both for complementing a
modified version of the RULA scoring system (Pérez-Duarte et al.,
2014) and as an alternative to the visual inspection according to
the BORG scale, since it is shown the two assessments are
strongly correlated (Jones and Kumar, 2010). An example of the
latter application has been studied by Cabecas (2007), where EMG
is used as an alternative to observational methods in computing
the SI score. The authors conclude that, once defined appropriate
trigger levels for the muscular activation, EMG is a valid alter-
native to visual inspection in the SI computation. This is true in
particular when efforts are not clearly associated to hand/wrist
movements and when non-cyclical high-frequency activities are
assessed. In the context of assessing WMSDs, several factors
interact at the same time, thus it is crucial to monitor all of them.
In general it has been shown that methods assessing different
factors lead to different risk evaluations. For this reason using
more than one method at the same time can help prioritize in-
terventions and ensure a more thorough evaluation of risk factors.
On the other hand, the use of more than one method can rapidly
lead to unacceptably high costs for the practitioner both from a
time and money view point (Chiasson et al., 2012). In this context
an automatic online assessment system, taking into account
several factors and consequently several different risk scoring
methods, would give a meaningful evaluation, without the cost
drawback of multiple observational assessments. For this reason
the problem of gathering motion and muscular effort data that
could serve WMSDs risk assessment has been approached. The
authors presented in Peppoloni et al. (2014) a preliminary version
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of the system discussed in this work, focusing on an offline
postural assessment based on RULA. In the present work the
precedent offline upper limb WMSD risk assessment is moved to
an online assessment, while enhancing the role of EMG by
introducing the strain index as a further risk indicator. The RULA
and the SI methods were selected as explicitly cited in the ISO
11228-3 and the UNI EN 1005 for the risk assessment of repetitive
task. These two methods have been chosen since they focus on
two different risk factors, namely postures and effort level, which
are equally critical. In particular the RULA action level is based
purely on the kinematic assessment, while the SI score is mostly
affected by the level of effort, along with the ratio of recovery
time and time under effort. In doing so the system presents a
deeper capability for analysis, compared to just kinematic or
effort-based assessment. The article is structured as follows.
Section 2 presents the method that was selected to assess WMSDs
risk, along with the techniques that were developed to recon-
struct motion from IMU sensors and to determine the effort in-
tensity from EMG signals. Section 2 shows also the method that
was selected to achieve an automatic segmentation of the activity.
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Section 3 shows the assessment of the system along with the
obtained results. Sections 4 and 5 conclude the paper with a
discussion of the results and the drawn conclusions.

2. Materials and methods
2.1. Motion capture and muscles strain analysis

The proposed method is based on the RULA and the strain
index methods for WMSDs risk assessment. These methods
require motion and muscular effort tracking as well as a seg-
mentation of the action to detect cycles and to determine when
efforts are actually exerted. The system employed is based on the
device presented in Avizzano et al. (2014) and comprises a wear-
able system which communicates wirelessly with a host pc, where
the main software is running. Inertial measurement units (IMUs)
are used to reconstruct the posture of the human upper limb. This
choice has been done because, being self contained and unob-
trusive, IMUs represent a solid alternative to classical optical
tracking systems (Kim and Nussbaum, 2013). Moreover they do

Fig. 1. Schematic representation of the seven DoF model used in our system. The model comprises three revolute joints for the shoulder, two for the elbow and two for the wrist.
The Denavit-Hartemberg reference frames for the kinematic chain are represented on the left.
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not require any further instrumentation to be mounted, such as
cameras system. To achieve motion tracking the system employs a
7 DoF model (Fig. 1) of the human arm having the chest as root
and three links for upper arm, forearm and hand. The state of the
model, namely joint angles, angular velocities and angular accel-
erations are estimated from the measurements coming from IMU
sensors using an Unscented Kalman Filter. Further details on al-
gorithms can be found in Peppoloni et al.,, (2013) and in Ruffaldi
et al. (2014).

In addition to the IMUs the system exploits a 8 channel surface
EMG. This kind of sensor allows to estimate the muscular effort
exerted on the actuated joint, thus the force produced in specific
parts of the human body, in our case the hand. Other information,
such as the level of fatigue can be estimated from the EMG signal.
The common procedure to obtain meaningful data is to firstly
filter the EMG signals with a bandpass filter (frequency [10—500]
Hz for 1 kHz sampling frequency or [10-250] Hz for 500 Hz
sampling frequency), since most of the power is in the
[20—200] Hz frequency range. (see (De Luca et al., 2010)).

This pre-processing step allows us to extract the features that
scores the muscular effort. Our choice is to use the root mean
square (RMS) of the power spectral density (PSD), since it gives
objective information about the current effort level.

All the EMG and IMU signals are gathered by the board and sent
via Bluetooth to a PC. Posture reconstruction and EMG features
software runs on-line on the host PC. The boards also guarantees
the synchronization of EMG and IMUs data. The architecture of the
system is shown in Fig. 2.

2.2. Task and cycles segmentation

RULA and SI are based on the cycles that the monitored ac-
tivity consists of. For example, for a grocery cashier activity the
basic cycle is composed of: reaching for the object, grasping it,
scanning and releasing the object. To assess every single cycle of
the task the system is equipped with an automatic segmentation
policy using posture and muscle effort compared to the maximal
voluntary contraction (MVC) of the subject for the monitored
muscles. In particular the task execution is monitored and at
every time step a state machine infers the actual phase of the
cycle. Since the main focus, in the presented case, is monitoring

cashiers during items scanning procedure five possible states are
assumed, chosen according to the Methods-time Measurement
(MTM) (Maynard et al., 1948) categories of action. The states are
Init: the initial state of the task, Neutral pose: the subject has is
arm lying on his side, Reach: comprising every movement of the
cycle performed without a load (e.g. reaching for the object and
returning to neutral pose), Grasp: the subject gains control of the
object, Move: every movement performed with the load. The state
machine transitions are performed according to forces and mo-
tion (both position and velocities). The state machine with tran-
sition conditions is shown in Fig. 3, where x; is the current
velocity of the hand, F is defined as %, while thy, and thy are
chosen thresholds for velocity and force exertion. The n-pose and
X, are obtained from the reconstructed motion, while F is ob-
tained from the EMG features.

According to the chosen segmentation policy a new cycle

n-pose

N-pOSe
I > thy

@y > thy NF <thy &p < thy NF > thy
p S thy NF 2>

i > thy ANF > thy

Fig. 3. The state machine employed for the online segmentation of the action cycles.
Every state represent a phase of the cycle and the transitions are performed according
to the reconstructed posture and the monitored muscles efforts. X, is the hand velocity,
Fis the ratio between the actual effort and the MVC, th, and thy are velocity and force
thresholds.
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Fig. 2. Architecture of the system. The wearable device acquires EMG signals and 9-axis inertial measurements from the sensors. The measurements are sent via bluetooth to the
software running on the host PC, computing motion reconstruction, EMG features and consequent action segmentation. The results are shown by a 3D animated avatar.
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Segmentation Results

States

Move

Grasp

Reach

‘ ' -—-PSD \
—— Shoulder Flexion|
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Fig. 4. Example of segmentation for a 3 cycles scanning action. The shoulder flexion angle and the sum of the RMS of the PSD for all che EMG channels are represented to show the

performance of the segmentation state machine for every cycle.

begins with the transition from Neutral to Reach and ends with
the transition from Reach to Neutral. An example of segmentation
for a 3 cycles scanning task is shown in Fig. 4. The shoulder
flexion is also shown, being as a good index of the motion during
the cycles, along with the sum of the RMS of the PSD for all the
EMG channels and the states of the state machine.

2.3. RULA and SI scores computation

Given a segmentation of the repetitive activity targeted by the
assessment, RULA and SI scores can be computed online. The
RULA score computation considers the upper arm flexion, fore-
arm flexion and pronation/supination together with the wrist
flexion and abduction. All of these variables are considered as
angles of deviation (in degrees) from the neutral position. Those
information are easily obtained from the posture estimation.
Since in this work tracking is limited to the upper limb, neck,
trunk and leg positions are considered to provide a constant
contribution to the RULA. This is a minor limitation of the ca-
pabilities of the system.

The SI uses both postural and effort scores. The formula to be
computed is:

Strain Index (SI) = (Intensity of exertion multiplier)
x (Duration of exertion multiplier)
x (Exertion per minutes multiplier)
x (Posture multiplier)
x (Speed of work multiplier)
x (Duration per day multiplier)

Some of the ratings reported in Steven Moore and Garg (1995)
are qualitative and associated to verbal cues. In order to translate
the verbal description to an objective measurement the ratings
have been interpreted to be calculated from the capture system.
Intensity of exertion is computed from the EMG signals at a 100 Hz

frequency, and it is provided as a percentage of the maximal
strength:

Exerted effort

%Intensity of effort=—————
Worker's MVC

(1)
where the exerted effort and the maximal effort are computed as
the sum of all the EMG channels RMS of the PSD:

4#tchannels
Exerted effort= "
i=0

(2)

where xi is the j—th value of the FFT of the EMG signal from channel
Jj, computed in a window of size N.

The worker's MVC is computed in a same way. Since the value is
subjective it can be obtained from a maximal effort static
contraction of the muscle group considered. Finally the Intensity of
exertion multiplier value for the cycle is obtained as the mean of
the Intensity of effort during the whole cycle. The duration of
exertion tells how long an exertion is applied and summed with the
duration of recovery gives the exertional cycle time. It is computed
as:

te —t¢
%Duration of exertion = tfc—tlf (3)
F— G

where tf and tf are the overall initial and final time for the states
under load (Reach and Move) of the cycle, while tjf and t{ are initial
and final time of the currently evaluated cycle.

The posture rating is evaluated with the estimated wrist flexion

Table 2
Rating criteria for wrist posture.

Rating criterion Wrist extension Wrist flexion Ulnar deviation

1 0°-10° 0°-5° 0°-10°
2 11°-25° 6°—15° 11°-15°
3 26°-40° 16°-30° 16°—-20°
4 41°-55° 31°-50° 21°-25°
5 >60° >50° >25°

Please cite this article in press as: Peppoloni, L., et al., (WMSDs issue) A novel wearable system for the online assessment of risk for
biomechanical load in repetitive efforts, International Journal of Industrial Ergonomics (2015), http://dx.doi.org/10.1016/j.ergon.2015.07.002
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Table 3

Rating criteria for speed of movement. Table 4
Rating criterion MTM-1 Cha}'agteristics of the group of participants. Mean (standard

deviation).

1 <80%
2 81-90% Characteristics Value
3 91 —100%0 Age 30.7(8.01)
4 101 *o] 15% Gender (Male/Female) n=7/3
5 >115% Handedness (Left/Right) n=4/6

and abduction angles according to Table 2 (Steven Moore and Garg,
1995).

The speed of work rating is computed considering the MTM-1
(Maynard et al., 1948). The ratio between the predicted pace
measured in TMU for the complete cycle of movements and the
actual pace is used, and the rating is assigned according to
Table 3.

The duration per day multiplier is considered for every cycle and
equals to 4, according the average working day of 4—8 h. Lastly the
effort per minute multiplier is computed online from the exertional
cycle time, while in the offline analysis is considered to be:

Number of exertions
Total observation time (min)

Efforts per minute = (4)

Once the RULA and SI scores are outputted by the system, the
corresponding action level (RULA) and risk level (SI) can be
computed. For the rating criteria computation the reader is referred
to (McAtamney and Nigel Corlett, 1993; Steven Moore and Garg,
1995).

An example of RULA and SI scores for the 3 cycles of scanning
previously presented are shown in Fig. 5. In the figures the cycles
segmentation and the SCORE for the RULA, along with the SI score
are represented for each of the three cycles.

2.4. Experimental setup

The system has been tested in an ecological environment to
assess the task of the supermarket cashiers. Moving from the
experience gathered during the preliminary test described by the
authors in Peppoloni et al. (2014) a mockup of the real scenario has
been built.

In particular a station ergonomically identical to the real
check-out position has been built to assess the system. Ten
healthy subjects have been monitored for two check-out opera-
tions each. The subjects belong to an age-group between 25 and
50 years, in particular 3 females and 7 males, of which 4 are left-
handed and 6 right-handed. Subjects characteristics are shown in
Table 4.

The operations have been carried on a shopping bag, composed
of ten items of different weight and shape shown in Fig. 6. Items
with correspondent weights are reported in Table 5.

Fig. 6. The ten items used for the experiment shopping bag. Every item has a different
weight ranging from 0.3 to 7.5 kg.

Sl and RULA scores

30 T T

25+ |— Segmentation

Fig. 5. Examples of results of the RULA score and SI score for the 3 cycles of scanning.
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Table 5

Items composing the shopping bag with their weights.
Item Weight [kg]
Dog food can 1.25
Milk pack 1.0
Fruit juice pack 2.0
Dish soap 1.5
Beer pack 2.5
Corn flakes pack 0.5
Pasta pack 0.5
Sweet corn can 0.3
Cat litter 7.5
Salt pack 1.0

To assess the capability of the systems against the evaluation
of an expert, every experiment was also recorded to have the
RULA and SI scores made manually by an analyst. The automatic
RULA action level and SI score are compared with the mean scores
given by two human evaluators for every cycle with the tradi-
tional observational evaluation. The chosen human evaluators are
two subjects not involved in the experiment with experiences in
human motion analysis. .

2.5. Procedure

Each participant signed an informed consent and were
informed that the system will measure their kinematic behavior
and muscles effort during the execution. The procedure described
to mount and calibrate the system according to the monitored task,
is general and represents the same procedure an investigator
should follow to use the system. The system is mounted on the
participant's upper limb. The wearable device is mounted on the
inner part of the subject upper arm with inside an arm-band. IMUs
are attached to the subject upper arm, forearm, and hand inside of
elastic bands. EMG sensor array is attached to the subject forearm
in such a way to monitor flexor carpi radialis, the palmaris longus
and the flexor carpi ulnaris. After the mounting phase the cali-
bration procedure is run. The calibration procedure is comprised of
two steps:

1. motion tracking system calibration
2. calibration of the Segmentation state flow machine thresholds.

During the first calibration the subject was asked to freely
move his arm in the space to calibrate magnetometers according
to the local Earth magnetic field, then the subject was asked to
hold briefly three static positions of the arm to let the system
autonomously compute the actual orientation (due to mounting)
of the inertial sensors. After the motion capture system is cali-
brated the user was asked to perform an MVC static test of the
forearm flexors muscles. After these phases the segmentation
thresholds can be calibrated. The thresholds th, and thy are the
only tunable parameters of the system. They have to be set ac-
cording to the monitored task dynamic. After the subject is given
an overview of the task, items and equipment. The participant is
asked to perform the scanning task at a normal pace and as
naturally as possible, returning in the neutral pose after every
scanned object. Online data regarding the reconstructed motion
(namely upper limb joints angles and angular velocities) and
muscle effort were monitored to understand the task dynamic
levels and correctly set the thresholds. After this calibration step

Acquisition

Fig. 7. The experimental setup for every subject. The subject is wearing the system on
his left arm and performs the scanning operation in an environment dimensionally
and ergonomically identical to a real life check out station.

Scores
Cycle # 5
Phase Move
RULA Score 3
Sl Score 45

Fig. 8. The graphical interface showing the online assessment of the system. The Score
Panel shows information about the current cycle number, the current phase and the
online RULA and SI scores. The Cycle Score Panel shows the mean RULA and SI scores for
the last completed cycle.

the actual acquisition phase start. The acquisition phase was
carried on twice for every participant, after the captures partici-
pants filled out a final questionnaire composed of two parts, the
first characterizing the population (age, gender, handedness and
previous experiences), the second concerning the participant's
feedback, assessed on a Likert scale from 1 to 7 (see Appendix A
for the complete questionnaire). No perceived effort assessment
has been carried out, except for the general tiredness sensation at
the end of the test.

The experimental setup is shown in Fig. 7.

The graphical interface showing the online analysis is shown
in Fig. 8. The experimenter is presented with two panels. The
Score Panel shows information about the current cycle number,
the current phase and the online RULA and SI scores. The Cycle
Score Panel shows the mean RULA and SI scores for the last
completed cycle. The interface is realized as a Matlab® GUI and
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Fig. 9. Percentage of time spent at each range during the task execution for all the subjects.

receives data from the system server through UDP connection.

Table 6
3. Results Accuracy of the system obtained comparing system results
for every cycle and mean of two human evaluators' results.
The results of the system for the RULA action level and SI scores Measure Accuracy %
for the risk level are reported according to the RUM .and SI score RULA action level 94.79%
sheets and the values given by the system. As an indicator of the SI 44.79%

system estimation Fig. 9 shows the percentage of time spent in
every RULA score range by every subject, considering the whole
experiment duration time.

As detailed in Section 2 compared the system results were
compared with the human evaluators' score. The score for every

cycle given by the human evaluators is averaged and compared to Table 7
the score given by the system for the same cycle. The total accuracy Intraclass Correlation Coefficients for a 95% confidence interval.
is computed as: Measure ICC 95% Confidence interval
Number of Correct Assesments RULA action level 0.00 —0.20 to 0.20
Accuracy % = ber of I +100 (5) RULA action score 0.26 0.06 to 0.43
Number of Cycles Sl risk level 023 0.04 to 0.41
SI score 0.28 0.08 to 0.45
where an assessment of the system is considered correct when it
RULA scores
4.6/ - - i -
|
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Objects

Fig. 10. The figure shows the inter-object variability of the system RULA action level. It can be seen that the minimum variability is found in the Beer pack evaluation (4% between
25th and 75th percentile), while the maximum is found in the Washing-up liquid evaluation (15% between 25th and 75th percentile).
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presents the same evaluation of the human evaluators. The results
are reported in Table 6.

To assess the conformity of the estimations made by the two
different evaluators, namely the system and the human evalua-
tors, the ICC (Intraclass Correlation Coefficients) (Doros and Lew,
2010) for a 95% confidence interval is reported in Table 7. In
particular the ICC(3,1) is reported. This index is used when every
evaluators evaluates every object and the evaluators considered
are the only ones of interest for the analysis. ICC is computed
both for the output of RULA and SI scores and for the equivalent
Action Level (RULA) and Risk Level (SI) to which the scores are
converted.

In order to assess the repeatability of the system measurement
compared the results obtained in every cycle for every subject for
the same object were compared. Results are shown in Fig. 10. The
minimum variability of the system assessment is 4% between 25th
and 75th percentile for the Beer pack item, while the maximum
variability is 15% between 25th and 75th percentile for the
Washing-up liquid item. The mean variability of the RULA action
level is 13%, which must take also into account differences be-
tween subjects.

A two-way ANOVA was performed on the RULA action level
with factors being objects and evaluator type. Data were tested
for homogeneity with Levene's test before applying ANOVA. The
levels of the factor objects were 10 as the number of items,
whereas two evaluator types were considered, namely the human
evaluators and the automatic system. The factor object was found
to affect the RULA action level (p<10~%), whereas the factor
evaluator type was not significant (p = 0.37). Also the interaction
effect is negligible (p = 0.46). The results of the ANOVA test are
shown in Table 8.

The system wearability has also been assessed thanks to the
questionnaires given to the subjects. In particular the encumbrance
and the comfort of working while wearing the system have been
investigated. The results on a scale of 7 have been reported in
Table 9.

4. Discussion

According to the results shown in the Results section the
system is able to give a RULA score estimation congruent to the
one given by the human evaluators. Despite the variability

Table 8
Results of the two-way ANOVA The factors considered are objects and evaluator
type.

Source SS df MS F Prob > F
Columns 26.83 9 2.981 894.33 0
Rows 0.0067 2 0.0033 1 0.3692
Interaction 0.06 18 0.0033 1 0.4599
Error 0.9 270 0.0033
Total 27.796 299

Table 9

Wearability assessment of the system, according to questionnaires given to
all the subjects. The mean values are shown on according on a Likert scale

from 1 to 7.
Parameter Score %
Comfort 52
Encumbrance 2
Usability for a complete work turn 53

between subjects, which includes different grasps used on the
objects and/or a greater support during the task given by the non-
monitored arm, the score associated to every object is repeatable,
thus demonstrating the precision of the system. Moreover
different scores are associated to different objects, as shown in
Fig. 10 and from the ANOVA analysis. Although the score is
influenced by the subject's grasp that changes the ulnar deviation
and the wrist flexion, it can be seen that the Cat litter item, which
is the heavier and the less comfortable to grasp, has the highest
score. Moreover the lowest score is associated to the Sweet corn
can item, that is the lightest and the most easily graspable. As far
as the SI score is concerned the system gives a score congruent to
the evaluators' evaluation in almost the 50% of the cases. The
discrepancy observed between the evaluators, can be due to
several factors related to both the human and the procedural
sides. First the SI score depends on the intensity of exertion,
which is estimated by the system according to MVC test per-
formed at the beginning of the experiment. As pointed out in
Cabecas (2007), the goodness of the test varies significantly ac-
cording to the trigger threshold for the intensity of exertion.
Therefore the actual capability of the subject to perform his real
MVC for the muscles considered leads to MVC tests more or less
informative about the real maximal contraction. Moreover high
frequency acyclic movements produce artifacts in the EMG sig-
nals, that may affect the SI score, as reported also in Cabecas
(2007). It has to be also noted that the human evaluators tend
to underestimate the actual efforts exerted by the subjects. This is
probably due to the video recording, that did not properly convey
the exerted effort. For example one of the evaluators rated the
displacement of the Cat litter item as a no-effort activity. This
consideration is also supported by the results of the question-
naires. Most of the subjects indeed felt fatigued at the end of the
experiment, and this evaluation is not congruent to the generally
low values for the intensity of exertion given by the human
evaluators. This would lead to further investigation on the sub-
jects' perceived effort using self-assessment sheets.

5. Conclusions

This work presents a wireless wearable system for online
assessment of WMSDs risks for the upper limb. The system
performs an online score computation according the RULA and SI
scoring methods. The system is capable of autonomously seg-
menting the cycles and giving a score for each cycle. The system
output was compared to a traditional score assigned by analysts
through observational inspection. The scores estimated with the
proposed approach proved to be congruent with the analysts’
scores. The users rated the system to be usable for a whole
average working turn, being not obstructive or painful during the
movements. Further developments for the system will involve
the implementation of a better intensity of effort estimator,
working on both technical and procedural aspects. A further
improvement will be an automatic calibration procedure to es-
timate limbs lengths autonomously during the calibration
procedure.
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Appendix A. Ergonomics assessment study questionnaire.
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Name:
Surname:
Age:
Handedness:

Gender: M F

1. Any past exposure to grocery cashier as customer? Y N

2. Any past exposure to grocery cashier as cashier? Y N

(a) If yes, for how long (months)

Read the following statements and check the number according to your

agreement with the statement.

3. The device is comfortable.

1123456
Totally
Disagree

4. The motion is not influenced by the device.

1123456
Totally
Disagree

5. The device is painful.

Totally
Disagree

6. I felt fatigued at the end of the tests.

Totally
Disagree

7. I had difficulties to reach and

Totally
Disagree

7 | Totally
Agree
7 | Totally
Agree
7 | Totally
Agree
7 | Totally
Agree
move the objects.
7 | Totally
Agree

8. I think the device is usable in a workplace during the work ac-

tivities.

1123|456 7] Totally
Totally
Disagree Agree

9. Comments.
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