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Abstract— In this paper we propose an automatic visual
based technique, integrated in a wayside monitoring system for
train inspection, that allows to assess the attitude of the metal
bow of a pantograph by combining a colour image captured
by an RGB digital camera and a pointcloud built from a range
sensor scan. An efficient and fast template-matching procedure
allows to detect the pantograph in the scene and associate a
matching attitude, searching for the most similar model present
in a database. The record of templates belonging to the database
exploits a virtual rendering environment that allows to optimize
the training stage in terms of computational load and time.
During actual inspection the RGB image and pointcloud of
the pantograph are opportunely processed and aligned to the
same reference frame. After the preliminary template-matching
step, the pointcloud is augmented with the virtual model of the
matched template and the attitude angular values are refined
by applying the iterative closest point (ICP) algorithm between
the real object and the virtual one, with the aim of reducing
eventual residual errors.

I. INTRODUCTION

Condition based maintenance is nowadays an increasing
common practice in international railways. Manual inspec-
tion operations are usually scheduled on regular basis plans
that depend on time and travel distance. This type of verifi-
cation usually takes much time and sometimes requires the
interruption of train operation which also implies significant
costs for the railway companies. This is the reason for
which much research focuses on the realization of automatic
monitoring systems that support and optimize the diagnosis
process in terms of costs and time. The pantograph is one
of the most monitored components among train parts, due
to its fundamental role in the train running and, at the
same time, to its tendency of wear and high probability of
suffering damage. Despite its robust construction structure,
the pantograph is indeed subject to high mechanical stress
and accidental strokes with surrounding obstacles met during
the train travel, such as tree branches, are not uncommon. As
a consequence, it can undergo deformations, misalignments
and attitude changes that could alter the electrical trans-
mission and may result in a system malfunction. A prompt
detection of the alterations is therefore essential to proceed
to the maintenance and avoid further damage.
Early attempts to predict failure using automated techniques
in the transport sector were proposed at the end of eighties.
In [1] Betts focuses mostly on indirect measurements of
pantograph-catenary contacts. In [2], Landi proposes the use
of the Hough transform as a means to monitor the linearity of
the strip contact surface recorded with an infra-red camera.
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In [3], Aydin proposes the use of a digital image taken from
a side camera combined with the use of gaussian mixture
models (GMM) to identify anomalies at the contacts. In [4]
Jarzebowicz integrates a 3D vision technique, based on laser
triangulation to measure wear and damages on the carbon
strips.
The most recent commercial systems are the Chinese SJ
Wayside inspection system, the U.S. Duostech APIS system,
the DK PantoInspect system and the PantoBot-Pavisys sys-
tem [5]. These systems are mostly focused on the detection
of surface material defects, such as wear of the carbon
strips, presence of chipping or foreign material and material
damage.
To our knowledge, none of these systems provides a com-
plete assessment of major fault conditions, such as: major
geometrical changes (such as consistent material loss), 6
degrees of freedom misalignments issues including frontal,
lateral and upwards as well as yaw, pitch and roll distortions,
historical analysis of pose changes.
The present work is being carried out between Scuola
Superiore Sant’Anna and TRENITALIA S.p.A. cooperation.
The cooperation aims at developing a full set of wayside
inspection tools for monitoring the health status of trains. At
present the concept of the portal and positioning of the sen-
sors is still under development and preliminary experiments
are being carried out in laboratory facilities and wayside
the maintenance plants, where it would be easier to manage
temporary set of cameras and robots.
The vision system presented in this paper is one of the
algorithms currently under development for the assessment
of the pantograph attitude. We developed an automatic visual
based inspection system that allows to compute the complete
attitude from the combination of an RGB image and a
pointcloud. The attitude assessment is based on a template-
matching algorithm, followed by the ICP technique [6].
The introduction of virtual models allows to optimize the
computational load and time of the training stage on one
hand and to reduce the error of the final result on the other.
The paper is structured as follows: In section II we illustrate
the pointcloud and RGB image alignment process, in section
III we explain the model based template matching technique,
in section IV we explain the matching and iterative closest
point refinement technique, section V shows the experimental
results.

II. RGB IMAGE AND POINTCLOUD ALIGNMENT

Since the RGB camera and the range sensor may be po-
sitioned in different ways, an accurate calibration procedure



Fig. 1. The concept of the wayside monitoring portal. Two laser camera from the top will capture pantograph and train roof data. Structured light camera
on the side will capture the carriage information.

is required to compute the relative pose between them. The
knowledge of the relative pose is essential to align the RGB
image and the pointcloud data and extract the local features
coherently.
Let’s denote with {D} the laser frame and with {C} the
RGB camera frame and indicate respectively with Dp and
Cp the 3D coordinates of a world point with respect to the
laser and the camera frame. Given the relative rotation CRD

and translation CTD between the two frames, the world point
expressed in {D} can be mapped to {C} as follows :

Cp = CRD
Dp+ CTD (1)

and projected, according to perspective projection and the
pinhole camera model [7], onto the camera image plane.
Denoted with Cx, Cy and Cz the 3D coordinates of the
point with respect to the camera frame, the corresponding
pixel coordinates u and v are obtained from equation (2):{

u =
Cx
Cz
fx + cx

v =
Cy
Cz
fy + cy

(2)

where fx, fy , cx and cy are the camera intrinsic param-
eters. By taking the pixels corresponding to each remapped
point after applying equations (1 - 2), we obtain the RGB
image aligned to the pointcloud and can extract the features
needed for the matching.

III. TEMPLATE BASED MODEL MATCHING

The literature is full of works that deal with pose estima-
tion of rigid bodies. Many of them are based on geometrical
features, such as points or lines [8], [9], [10]. In these cases
the points/features extracted must be identified uniquely and,
however overall information about the body may be lost
(single features can be extracted despite loss or damages of
some of its parts). On the contrary, a template-based method
carries out a comparison of the scene with a reference model
and fails in case of deviation of the real object from the

Fig. 2. Pointcloud, RGB image and resulting aligned RGB image.



intact model. The one employed in this work is described in
[11], since we considered it most suitable for the data of our
interest and it allows us to exploit the coexistence of 2D and
3D data in an optimized way. In short, the algorithm is based
on the extraction of local features (quantized colour gradients
and surface normals orientations) from RGB and depth
data and their comparison with previously stored templates.
Comparison is carried out through simple binary strings
obtained from the processing of the features and thus the
method is very fast and efficient. A matching occurs, when an
adjustable similarity score threshold is reached. On the other
hand, the storage of templates, as previously mentioned,
requires the acquisition of numerous colour images and
pointclouds of the pantograph from which the visual features
have to be extracted and templates have to be created, so
as to match the attitude seen in the scene with one of
the recorded ones. Manual acquisition requires time and
highly accurate attitude recordings. Hence, to accelerate the
procedure, we introduced a virtual reality module based on
the OpenGL library [12] that automatically generates a wide
set of views of the object from its CAD model. During the
training process, we assign different attitudes to the CAD
model and a virtual rendering process projects the CAD
model onto the image plane of a virtual camera. In this
way we create a wide set of synthetic RGB images and
pointclouds depicting the pantograph in different attitudes.
Figures 5 and 4 illustrate the basic concept of the rendering
process. The image projections are made at a work-distance,
and for different values of the roll-pitch-yaw angles (with
a 2o step). At the same time, the feature training system
takes the synthetic RGB and depth data to compute the visual
features and create a template that labels a specific attitude
configuration.

Fig. 3. Basic concept of virtual rendering process. The CAD model is
projected onto the image of a virtual camera.

IV. MATCHING AND ICP REFINEMENT

In a first step we roughly search for the most similar
templates that match the features computed in the RGB
image and pointcloud data. Since the matching is based on
a similarity threshold, more templates that match the current
scene can be selected. As a similarity score is associated
to each matched template, we compute the matched pose as

Fig. 4. RGB image and pointcloud resulting from the rendering of the CAD
model of the metal bow of an FS 52/92 pantograph, projected in different
poses with respect to the virtual camera frame.

the weighted average of the selected ones, where the weights
are the respective similarity scores and assuming an angular
range that rules out the singularity cases.

ψ =
∑

i siψi

si

φ =
∑

i siφi

si

θ =
∑

i siθi
si

(3)

where ψ, φ and θ are the body’s yaw, pitch and roll angles
and si and and ψi, φi and θi respectively the similarity score
and attitude angles associated to the i-th matched template.
Next, the virtual pointcloud of the matched template is
projected onto the scene, the real pantograph pointcloud is
extracted as a cluster from the entire cloud and the two clouds
are more finely aligned through the iterative closest point
technique. The rotation matrix R (ψf , φf , θf ) encoding the
body’s attitude is eventually corrected by the further rotation
matrix R (ψr, φr, θr) that aligns the template virtual cloud
to the real one:

R (ψf , φf , θf ) = R (ψ, φ, θ)R (ψr, φr, θr) (4)

V. EXPERIMENTAL RESULTS

Since the laser scanner and high resolution camera ex-
pected to be used for the purpose weren’t available yet, we
carried out a set of preliminary experiments by employing an
uncalibrated KINECT for XBOX ONE. The sensor furnishes
both a pointcloud, as a matrix of 3D points expressed
in the camera frame, and an aligned RGB image, which
in case of uncertain intrinsic parameters and relative pose
between the RGB and IR camera can be subject to alignment
errors. Moreover, as shown in [13] the sensor’s accuracy
decreases with the distance and the pointcloud is affected
by measurement noise
In order to validate our visual based attitude assessment
system, we positioned the pantograph bow on a metal support
and manually and randomly rotated it in a way to record
different attitudes. Our results were compared with those



Fig. 5. Example case of when ICP corrects the template-matching residual
error. The green cloud is the virtual cloud of the matched template, while
the red cloud is the one resulting after ICP application.

obtained by an OptiTrack motion capture system (see Figure
6).

Fig. 6. System of Data Acquisition: Optitrack and Kinect for Xbox One.

From the results, we notice that the angular errors are
significantly reduced after ICP alignment. Tables I and II
show the minimum, maximum and average error values
obtained first considering only the matched template and then
refining with ICP.

In Figure (7) the red pointcloud is the virtual pointcloud
obtained from the CAD model and projected onto the scene
according to the position and attitude resulting computed
by our algorithm. The virtual pointcloud overlaps the real
pantograph bow in the pointcloud. The green points on the
aligned RGB image are the matching points found by the
template-matching algorithm. A further window shows the

TABLE I
MINIMUM, MAXIMUM AND AVERAGE ERROR VALUES (IN DEGREES)

DERIVING FROM THE TEMPLATE-MATCHING.

YAW PITCH ROLL
MIN 0.9521 3.5437 5.9381
MAX 5.8532 9.9304 12.6316

AVERAGE 2.7836 5.7219 8.8982

TABLE II
MINIMUM, MAXIMUM AND AVERAGE ERROR VALUES (IN DEGREES)

AFTER ICP APPLICATION.

YAW PITCH ROLL
MIN 0.0484 0.8508 0.3363
MAX 5.4081 5.4430 5.5318

AVERAGE 2.3245 2.5902 2.5581

CAD model rendered according to the computed pose.
Figure (8) shows the real and overlapped virtual pointclouds
from different points of view.

Fig. 7. Result of template matching and ICP in two of the arbitrary attitude
placements. The left image shows the virtual model pointcloud (in red)
overlapped on the real pointcloud after the estimation process. The right
image on the top shows the matching points (in green) extracted from the
RGB image, while the one at the bottom shows the virtual model RGB
image rendered according to the estimated attitude. The frame on the 3D
image represents the camera reference frame.

VI. CONCLUSIONS AND FUTURE WORK
We described an automatic visual-based technique for the

assessment of the attitude of a train pantograph bow. Our
system is able to compute the attitude from the pointcloud
and the RGB image of the pantograph bow by means
of a template-matching algorithm, followed by an iterative
closest point refinement. The first one is based on local
visual features, which are extracted from the current data
and compared to a set of previously stored templates, built



Fig. 8. Overlapped model virtual pointcloud seen from different viewpoints.

from virtual models, in order to find best matches. The
subsequent ICP alignment process serves to improve the
found attitude and is applied between the real pointcloud
of the pantograph bow and the virtual pointcloud of the
matched template . Experimental results show that the system
has good performance and that the combination of template-
matching and ICP leads to low maximum errors.
Future work will concern the setup of the actual sensors
and experimental tests carried out by evaluating also the
robustness of our algorithm to mis-alignments.
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