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Abstract

In this paper we present a novel wearable suit for haptic feedback capabilities at user’s hands combined with upper
body motion tracking. In the work we present both the system design and the algorithms used for motion tracking and
haptic rendering. The overall system was applied to the co-located tele-operation of the Baxter research robot to perform
manipulative tasks usually carried out by human personnel in the industry.

1 Introduction
In the last years major robots companies commercialized
several humanoid industrial robots to allow to automate
phases of industrial processes that require high dexter-
ity and that nowadays are performed only by humans.
These robots are the Baxter Robot by Rethink Robotics,
the YUMI by ABB, the dual LBR by KUKA, the Dual
Arm Wisematic by Epson, the Nextage by Kawada Indus-
tries. The processes that involve this category of robots are
characterized by assembling and repetitive tasks not eas-
ily transferable to an automatic platform, making the robot
programming not trivial. This trend caused a growing need
of devices to interface with such robotic platforms and to
transfer the human dexterity to them. The programming by
demonstration (PbD) research field [7] is aimed at the de-
velopment of algorithms and tools to program a robot sim-
ply showing it the action to perform. This method allows
to subtract humans from the tedious repetitive manipulative
industrial tasks like the ones usually found in the assem-
bly lines. In some cases PbD can be performed by kines-
thetically teaching the robot, or, if possible, by showing
without directly interacting with it. The later approach re-
quires to finely track the human movements and it demon-
strates that a fundamental role is played by the force and
impedance exerted by human operators. Within this con-
text our paper presents a novel wearable suit to capture
human movements and to provide force feedback exerted
over the index-thumb fingers while performing generic bi-
manual manipulative tele-operation tasks [1]. Such suit
meets the requirements of various research fields in terms
of human body tracking and haptic feedback. The devel-
oped hardware and algorithms find application first in the
programming by demostration field, but also in teleoper-
ation applications, virtual environment interaction and all
robotic fields that require to track human motor activities.
The aim of the application of this technology to robot pro-

gramming is to create a new category of robots able to in-
teract with the surrounding by using strategies learned di-
rectly by the human actions. The developed suit was ap-
plied to a teleoperation/PbD task using a research robotic
platform that has gained great success in the last year: the
Baxter Research Robot by Rethink [4]. The overall system
was tested to perform bimanual teleoperation tasks with
this robot [8, 9, 10, 11]. The system offered the possibility
to capture and record the way how humans perform some
manipulative/assembly tasks. The collected data allowed to
solve the difficult programming task generalizing first and
then transferring the human dexterity to a robotic platform.
We tested the system in different scenarios populated with
various-stiffness objects that simulate both industrial and
domestic cases. The system showed good performance in
guiding the Baxter robot to perform pick and place opera-
tion with a failure rate near zero and some more complex
bimanual task like passing an object from a hand to the
other one.
The sections are organized as follows. In the Section 2
there is an overview of the suit, in section 3 the algorithms
used for haptic rendering and attitude estimation are ex-
plained in detail, in section 4 the joint angles reconstruction
and the motion mapping for tele-operation is described, in
section 5 experimental results are presented.

2 Suit Description
The suit was designed to meet some important features that
are difficult to find in other similar products. First, the
system was designed to be fully portable and so battery-
powered. To overcome the problem of different sized peo-
ple we realized the suit in the form of multiple elastic strip
containing the electronics, the sensors and the batteries. All
the modules are WiFi and can be connected to a network in-
frastructure or directly to a mobile platform like a PC or a
smartphone to collect the data, compute various algorithms



and send the results remotely or locally to a robotic plat-
form. Furthermore the suit is modular, the haptic interface
and the motion capture system can be used independently
for different applications.

2.1 Motion Capture System
The motion capture system is made of several 9-axis Iner-
atial Motion Unit (IMU) sensors mounted on arms, fore-
arms, hands and torso of the users, and it is capable to cap-
ture the upper-body human movements in terms of joint
angles of a kinematic tree describing the human kinematic
structure or simply in terms of the position of the hands
with respect to the torso [2].

Figure 1 Suit Architecture Diagram showing the inertial
capture for each arm on the top part, and the haptic feed-
back on the bottom part.

Figure 2 Real wearable suit in which the user is wearing
an Oculus HMD for telepresence

The IMU sensors used in this work are the InvenSense
9250 set with the features described in table 1.

Gyro Full Scale Range ±250deg/s
Gyro Rate Noise 0.01 deg/s√

Hz
Accel Full Scale Range ±2g

Compass Sensitivity 0.6µT/LSB(14−bit)
Digital Interface SPI

Table 1 Invensense 9250 features

2.1.1 Custom Board
To read the sensor data and to send them to a computer we
developed a board made up of three main components:

• An IMU sensor InvenSense 9250 described above.

• A WIFI IoT module to stream the data.

• A Microcontroller ARM Cortex M4 STM32F407 run-
ning at 168MHz to read the IMU sensor with the SPI
protocol and to send the collected data to the WIFI
module with the USART protocol.

Such board is versatile because it can be used also to con-
trol the haptic interface. In fact additional connectors were
added to read an incremental encoder, to read an analog
signal and to send a PWM signal to a driver of a DC motor.
In figure 3 the board is illustrated.

Figure 3 Custom Board

2.2 Haptic Interface
The purpose of the haptic interface is to allow the user to
manipulate object with a teleoperated robotic arm.
Many industrial and research robotic platforms make use
of a simplified 1 degree of freedom (DOF) gripper as end-
effector to be able to grasp objects. For such a reason we
focused on the development of 1 DOF haptic interface in
order to correctly drive the robotic gripper counterpart.



The chosen correspondence for the user motion is the hu-
man pinch movement. This movement is characterized by
a coupled motion of the index and thumb fingers in order
to effect a force-closure in the grasp given by the contact
between the human(or robotic) fingers and two surfaces of
the manipulated object.
The haptic interface was designed in multiple steps by us-
ing the power and the speed of the rapid-prototyping of-
fered by the 3D printing. We realized two version of
such hand-mounted device: the first one was built with a
in-extensible cable-based transmission, the second one in-
stead was realized with a gear-based transmission. Both the
version of the haptic interface are actuated with a highly
reduced micromotor (300:1) equipped with a magnetic en-
coder. The haptic rendering was tested first by interacting
with virtual objects [1, 12] and then it has been tested with a
Rethink Robotics Baxter robot. Both the robotic platforms
have 1 DOF gripper that is controlled in position. This is
due to the fact that this kind of gripper has a reduced ve-
locity to not brake the grasped object but obviously this
introduces a delay in the teleoperation loop. To overcome
this problem and maintain loop stability a virtual coupling
haptic rendering algorithm was implemented.

Figure 4 Haptic Interface with gear transmission

3 Algorithms description
In this section we describe the algorithms used for motion
reconstruction and for haptic rendering. First let introduce

Figure 5 Schematics of the haptic feedback and corre-
lation between user hand and robot gripper(in the picture
the Baxter gripper)

the notation and the human arm kinematic model employed
in this work. A 7 DoF kinematic chain was used to model
each human arm. Three DoF model the shoulder, two DoF
the elbow and two DoF the wrist. We report here the DH
table used for left arm in table 2. The parameters l f a and
lua indicating respectively the length of the upperarm and
the forearm are manually measured and set in the model.

Frame ai αi di θi

1 0 π

2 0 θ1 +
π

2

2 0 π

2 0 θ2− π

2

3 lua 0 0 θ3 +
π

2

4 0 π

2 0 θ4 +
π

2

5 0 π

2 l f a θ5 +
π

2

6 0 π

2 0 θ6 +
π

2

7 0 0 0 θ7

Table 2 DH table of the human arm model

In figure 6 a schematics of the frames used for the left arm
is illustrated. Notice that there are four additional frames
indicating the inertial sensors: these are ST , SU , SF and
SH respectively for the sensors attached to torso, upperarm,
forearm and hand. Let name Si the i-th frame of the DH
kinematic chain, we suppose that ST is rigidly attached to
S1, SU to S3, SF to S5 and SH to S8. Our algorithm aims
at calculating the joint angles and the end-effector position
of the kinematic chain described above by estimating the
relative attitudes of the sensor frames.

3.1 Attitude Estimation
The attitude estimation of the sensor frame is done by us-
ing a filter similar to the one presented in [5]. Such filter al-
lows to estimate the inertial sensor orientation with respect
to the a earth-fixed frame named SE measuring the accel-
eration, the angular velocity and the magnetic field: First,
the filter estimates the orientation by integrating the angu-
lar rate measured by the gyroscope, employing the classical
quaternion representation. The integration equations are:

S
Eqω,t =

S
E q̂est,(t−1)+

S
E q̇(ω,t)∆ (1)

S
E q̇ω,t =

1
2

S
E q̂est,(t−1)⊗

S
ωt (2)

where S
Eqω,t indicates the quaternion describing the rota-

tion between the frame SE and SS, with SS indicating a
sensor attached frame. The subscript ω indicates that the
estimation is done with the angular velocity measure only.
Sω denotes the angular velocity expressed in the frame SS.
∆ is the integration step.
The filter uses also the accelerometer and magnetometer
measures to estimate the orientation and to overcome the



Figure 6 Schematics of the frames used in the kinematic model

drifting problems. The estimation is formulated as an opti-
mal problem.
The objective function is:

f
(S

Eq,Ed,Sr
)
= S

Eq∗⊗ Ed⊗ S
Eq−S r (3)

with

Sr =
[Sa

Sm

]
,Ed =


0
0
1
1
0
0

 (4)

Ed indicates the acceleration and magnetic field expected
components in the SE frame. Notice that such components
are for NWU North-West-Up reference frame. Employing
the gradient descent method to minimize the function in
(3), the algorithm results as follows:

S
Eq∇,t =

S
Eqest,(t−1)−µ

∇ f
(

S
Eq,E d,S r

)
‖∇ f

(
S
Eq,Ed,Sr‖

) (5)

where the subscript ∇ in S
Eq∇,t indicates that the estimation

is performed using the accelerometer and compass only.
The complete estimation algorithm is:

S
W qest,t = γ

S
W q

∇,t +(1− γ)S
W q(ω,t) (6)

where γ is a constant scalar value.

3.1.1 Compass Calibration
An important issue of the IMU attitude estimation process
concerns the need of magnetometer calibration due to soft
and hard-iron distortions [6]. The state of the art attitude
estimation algorithms assume the magnetometers to be cal-
ibrated before starting the filtering process. This is usu-
ally performed by collecting measures of the magnetic field
while moving the sensor around three orthogonal circum-
ferences and then finding the parameters of a 3D ellipsoid
fitted on the collected data. In fact, varying the orientation
of the sensor, the collected measures of the magnetic field
in general belong to a generic ellipsoid while they must be-
long to a sphere centered in the origin. The main drawback

of such approach is that the magnetometer calibration pa-
rameters can change if the sensor position is too far from
the place where the calibration was performed. Further-
more the calibration parameters can change with the time
if, for example, other devices are powered up or off nearby
the sensor or the sensor approaches some sources of elec-
tromagnetic interference. To model the distortion errors an
affine function can be used:

Sm̂ = TS
Sm+S c (7)

where Sm̂ is the distorted magnetic field in component with
respect to the sensor fixed reference frame and

As =

α 0 0
0 β 0
0 0 γ

 , Sc =

S
xc
S
yc
S
z c

 (8)

Finding the right values for the terms AS and Sc in (7) is the
aim of the calibration procedure. Such terms are usually
found by fitting an ellipsoid to a set of data collected while
moving randomly the sensor in a way to explore uniformly
all the direction. As announced above, the calibration is
usually performed once in batch before starting to use the
magnetometer, for this reason it suffers the problem that
the sensor must remain in the neighborhood of the place
where the calibration was made because of the variability
of the magnetic field. To overcome this limitation we pro-
pose a recursive calibration scheme that continuously es-
timates the calibration parameters. The employed sensor
provides the term AS by default so the calibration objective
is to find the components of Sc.
The iterative calibration scheme is based on a Kalman fil-
ter, where the state update model is without noise:

xk+1 = xk, x =

S
xc
S
yc
S
z c

 (9)

The measurement model is the simple equation of a sphere:



yk =Cxk + ε = 0 =

=
(S

xm2 + S
ym2 + S

z m2 −2S
xm −2S

ym −2S
z m 1

)


1
S
xck
S
yck
S
z ck
R2

+ ε

(10)

where S
xm, S

ym, and S
z m are the components of the compass

measures in the sensor frame. The estimation equations
are:

x−k+1 = x−k (11)

x+k+1 = x+k +L(0−Cx−k ) (12)

With
L = QkC

(
CT QkC+R

)−1
(13)

Qk+1 = Qk−LCT Qk (14)

where Q is the covariance matrix of the state estimate. The
matrix R is the covariance of the measurement noise. While
usually the matrix R is set to a constant value, we defined a
policy to set the matrix R according to the angular velocity
of the sensor measured by the gyroscope in a way to give
more relevance to the measures taken with a higher angular
velocity. This technique was adopted to avoid to accumu-
late relevant measures when the sensor is not moving. In
particular R was set to:

R =


1∥∥∥ω∥∥∥ , if

∥∥∥ω

∥∥∥< l

1
l , otherwise

(15)

where l is a constant threshold.

3.2 Sensor Orientation Calibration
As we said above we rigidly attached four IMU to the body,
one to the torso, one to the upperarm, one to the forearm
and one to the hand. Inevitably the wearing phase intro-
duces some little uncertainties in the orientation of the sen-
sors with respect to the body parts.
As described at the beginning of this section the sensors
are supposed to be rigidly attached to the frame S1, S3, S5
and S8 of the kinematic chain.
To estimate the right orientation of the inertial sensors with
respect to the DH frames we set a calibration procedure re-
quiring the user to stay in three different poses as illustrated
in figure 7 (These figures have been created interfacing the
suit with the Unity 3D Game Engine). The algorithm col-
lects measures of the sensors attitude in these three differ-
ent poses and then with an optimization algorithm it finds
the poses of the sensors with respect to the frames of the
kinematic chain.

In particular for each sensor we obtain three sets of m mea-
sured poses and three sets of m target poses. The orienta-
tions of the sensors are set to the solution of this optimal
problem:

A
Bq̂ = min

A
Bq

m

∑
j=1

3

∑
k=1

∥∥A
Eqk− A

Bq B
Eqest, j,k

∥∥ (16)

with (A,B) ∈ {{ST ,S1}{SU ,S3}{SF ,S5}{SH ,S8}}

3.3 Haptic Rendering
Figure 5 shows the variables used by the haptic render-
ing algorithm. X f is the distance between the index and
thumb fingers measured by means of a magnetic encoder
attached to the DC motor shaft and the haptic device di-
rect kinematic parameters. Xg is the distance between the
gripper fingers. Kh and Bh are the parameters of the haptic
impedance feedback exerted at the user fingers. The final
haptic rendering algorithm becomes:

F =−Kh(X f −Xg)−Bh(Ẋ f − Ẋg) (17)

The same algorithm is used back to compute the new Xg
position reference for the robotic griper.

4 Joint Angles Estimation
The information obtained with the attitude estimation filter
is used to recover the human arm kinematic state by em-
ploying an inverse kinematics algorithm using the knowl-
edge of the human kinematic structure.
To estimate the joint angles of such kinematic tree we used
an inverse kinematics algorithm. In particular using the es-
timates of the attitude of each sensor frame obtained from
the inertial measures, the algorithm uses the closed form in-
verse kinematics function available for the employed kine-
matic structure.
In particular the decoupled orientation estimation of the
IMU sensors provide us an estimation of the relative at-
titude between the respective attached frames of the kine-
matic chain as described in section 3. So let be T

Eq, U
E q,

F
E q, H

E q respectively the attitute of the Torso, the Upperarm,
the Forearm and the Hand with respect to the NWU refer-
ence frame. We can obtain the relative attitudes T

U q, U
F q, F

Hq
simply combining the previous ones. Then it is trivial to
extract the joint angles. In fact, with reference to the kine-
matic structure described in table 2 and illustrated in figure
6, T

U q is a function of θ1,θ2,θ3, U
F q is a function of θ4,θ5

and F
Hq of θ6,θ7

4.1 Motion mapping
To teleoperate the Baxter Robot an end-effector kinematic
mapping scheme was adopted. In particular let xH be the
estimated human hand pose with respect to the human torso
and xR the robot end-effector position, furthermore let as-
sume that the transformation between the robotic torso and
end-effector be congruent with the transformation between



Figure 7 Calibration poses

the human torso and hand, then the robotic arm is con-
trolled to minimize the quantity e =

∥∥xH − xR
∥∥.

A closed loop inverse kinematic scheme (CLIK) with the
pseudo-inverse of the robot end effector jacobian matrix
was adopted.

qR,k+1 = qR,k + J+
(
xH,k− xR,k

)
(18)

where J+ indicates the pseudoinverse of robot jacobian
matrix. To obtain a real-time inverse kinematics we per-
form only three step of such iterative equation for each new
estimated hand pose.

5 Experimental Results
We validated the motion reconstruction system with an
high precision optical tracking system (TRIO system by
OptiTrack). We report the temporal evolution of the hand
position estimated with our algorithm and the respective
optical measures in figures 9-11. Figure 12 shows that the
maximum reconstruction error is less than 2 cm.
We report the results of two experiments performed with
the suit in a teleoperation scenario. Figure 8 illustrates a
schematic of such scenario. In the first experiment the user
teleoperates the Baxter robot performing a circular move-
ment with the hand.
The human hand position and the robot end effector posi-
tion are shown in figure 13. Notice that the teleoperation
error is due substantially to a delay caused by the position
control system of the robot arm. The other test performed
is a pick and place teleoperation task: a user guides the
robot with the full suit to grasp a three diferrent objects and
put them in a target place. The objects are: a tennis ball,
a little plastic bottle and a glass. The distance between the
source and target places is 50cm. The task is considered
completed if the user moves the objects to the target place
with a maximum error of 5cm. Table 3 reports the results
of such experiment:

N. of tests 30
Completion time Mean 67.4s

Completion time Standard Deviation 18.3s
Success Rate 100%

Table 3 Results of the pick and place teleoperation

6 Future Work
In this paper we presented the hardware and software de-
sign of an integrated suit for motion capture and haptic
feedback. Future developments include:

• Improve the reconstruction accuracy and the human-
robot kinematic mapping using statistical information
on human movements.

• Improve the haptic response developing other haptic
rendering algorithms.

• Design of an algorithm for the automatic estimation
of the human limbs lengths.
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