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Abstract. Mixed Reality applications involve the integration of RGB-
D streams with virtual entities potentially extended with force feedback.
Increasing complexity of the applications pushes the limits of traditional
computing structures, not keeping up with the increased computing
power of multicore platform. This paper presents the CoCo framework, a
component based, multicore system designed for tackling the challenges
of visuo-haptics in mixed reality environment, with structural reconfigu-
ration. Special care has been also given to the management of transfor-
mation between reference frames for easing registration, calibration and
integration of robotic systems. The framework is described together with
a description of two relevant case studies.

1 Introduction

Advancements in sensing, computing and display technologies is expanding the
possibility of uses of Virtual, Augmented and broader Mixed Reality (MR) appli-
cations1, in local or networked situation, involving robots or multiple users. Such
variable Mixed Reality applications, in general, require the integration of sens-
ing components, simulation and visuo-haptic feedback. The development of such
applications is typically based on a computer graphics oriented framework, typ-
ically structured around a scene graph, and many of such frameworks do exist
spanning from commercial ones to community or research developed. The scene
graph is then paired with some form of application development based on explicit
programming or visual programming following a data flow paradigm.

The abstraction level of a MR development tool allows the developer to eas-
ily create a prototype, but, due to the nature of high-latency, high-throughput
nature of sophisticated MR applications it can soon impact into performance
issues associated to frame rate and latency. The aspect of processing and output
rate is even more relevant when the MR application needs to provide haptic
feedback or timely feedback to a robot. In the end, as it is well known, a mul-
timodal MR application is organized around multiple components exchanging
data at different rates. The point is how to take advantage of recent multi-core
systems for reasonably interesting MR solutions.
1 We use the general term MR for all the applications in the Mixed Reality continuum.
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This paper discusses the design choices and the implementation of the Com-
pact Components (CoCo) framework that aims at providing abstractions con-
cepts and specific components for addressing MR applications with modern
multi-core systems. CoCo has been so far employed in the context of VR and
MR applications with haptic feedback [1,2] or interfaced with robots [3]. CoCo
is founded over three pillars that can be considered fundamental in such appli-
cations: integration, computing abstraction and transformations. The first pillar
is provided by the component based approach, the second allows to control the
use of resources after the development of components, and the third is an impor-
tant mechanism that supports reference frames flexibility, registration and sensor
fusion. Conceptually CoCo is based on three orthogonal graphs: computational
graph that support the data flow between components (a DAG), a scheduling
graph that supports the partitioning of components’ execution in processes and
threads (a tree), and a transformation graph (a general graph).

The following section provides the research context on the topic for better
understanding the proposed innovation. Section 3 presents the concepts behind
the design of CoCo, Sect. 4 describes the functionalities provided for support-
ing visuo-haptic applications. Section 5 discusses how Transformations between
frames are addressed. Then Sect. 6 provides a case study followed by conclusions.

2 Background

There is a long history of frameworks for 3D graphics applications and their nat-
ural extension to Virtual Reality setup. Since the beginning the VR and in gen-
eral MR applications have posed computing challenges, due to the requirement
of high and regular output frame rates with minimal latency. In VR applications
the main issues arise from integration with physics simulation and interaction
devices. When moving to AR or MR applications the sensing component involves
higher computing requirements due to the closed loop with imaging devices.
Finally when moving to visuo-haptic devices there is the additional requirement
of providing timely haptic feedback that, for rigid objects, requires update rates
in the order of 1kHz or more.

Two main approaches are found in literature and in the implementation for
structuring the application: scene graph-based and flow-based approaches. In
scene-graph approaches the developer creates a hierarchy of entities spanning
across the different modalities, then the framework organizes the processing in
loops (graphics, physics, collision) with some flexibility for the developer. This
approach is found in systems such as OpenSceneGraph [4], XVR [5] or Unity.
Conversely flow-based approaches allow the developer to describe the application
in terms of streams of data and events connected in a flow structure. The latter
approach can be found in the X3D standard and derivatives like InstantReal-
ity [6] and other systems such as InTml [7] or FlowVR [8]. FlowVR is a notable
example because it provides distributed computing capabilities for VR, introduc-
ing a very flexible mechanism for synchronization among modules that allows
the implementation of several communication patterns. In general the use of
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declarative approaches, in comparison to immediate programming, allows for
the underlying framework to perform certain optimizations based on the under-
lying platform, or for extending the rendering from single output to stereo or
more.

When dealing with visuo-haptics the existing frameworks follow both pat-
terns like scene-graph in CHAI3D [9,10], or flow-graphs derived from X3D in
H3DAPI [11]. CHAI3D leaves to the developer the burden of organizing the
loop, while internally performing traversal and computing, while H3DAPI and
derived follow the event-based approach of X3D. In the above examples the con-
trol of execution loops is hidden in the framework or explicitly managed by the
developer at low-level, with hard work for scalability or profiling.

CoCo contributes to the field by proposing a component based approach in
which each component has an independent execution loop that is not directly
controlled by the component developer. Instead the framework allows for struc-
turing the scheduling of components at run-time providing space for reconfigu-
ration depending on the users needs. This approach takes inspiration from the
OROCOS robotic framework [12] introducing specific aspects aimed at visuo-
haptic MR applications.

As discussed in the introduction the third pillar of CoCo is the transforma-
tion systems, an aspect that is fundamental in any MR or robotics application:
how transformation between reference frames are generated and used by the
components. In scene-graph based frameworks the scene-graph itself provides
the structure of the transformations forcing a tree-like structure, while in data
flow based approaches there is the need to stream the transformation along the
structure.

CoCo provides a general declarative approach of transformations that is
orthogonal to the information flow between components and based on a Spatial-
Relationship Graph (SRG). Differently from the ROS [13] TF2 system, CoCo
allows to associate semantics to transformations at run-time or at build-time,
providing, in this way, the support for sensor fusion and moreover generalized
registration, two aspects that are fundamental for AR/MR [14].

3 Concepts

The foundation of the CoCo framework is a component-based system in which
each node is an independent unit of execution exchanging data, invoking opera-
tions or triggering the execution of other components. CoCo has been developed
in C++11 with the objective of being lightweight and multi-platform. Compo-
nents are loosely coupled to increase modularity and reduce development depen-
dencies: in terms of C++ this means that the only common element between
components is the data exchanged. Components are stored in dynamic or static
libraries and they can be instantiated at run-time by name. A CoCo application
is typically launched by providing an XML file that configures the components
and connects them.

In general a CoCo component comprises the following elements:



342 E. Ruffaldi and F. Brizzi

– Callbacks, in particular with the loop callback onUpdate.
– Input and output data ports that are used for the main exchange of data.
– Declarative attributes that are configured via XML or at run-time.
– Operators that can be invoked in a thread-safe manner.

3.1 Components Lifetime

Components can be instantiated at any time although it is more typical to
have main instantiations at application startup time. Two functions are used to
perform initialization and configuration (init, onConfig) based on the parameters
received via the configuration file. After initialization a component receives an
execution request in the onUpdate function that, due to the execution abstraction
of CoCo, can be periodic or not. In any case the onUpdate implementation should
not block the execution.

3.2 Ports

Ports are the key mechanism for data exchange between components inside CoCo
and they have been designed to support different patterns of exchange and more-
over, the exchange of large entities such as images or pointclouds.

Each component can declare a set of input and output named ports which are
templated against a C++ native type. Thanks to C++11 capabilities introspec-
tion of ports and their types is straightforward but at the moment no serialization
capability between processes has been introduced. A port marked as event port
is then used by the scheduling system to trigger aperiodic components.

The connection between ports is many-to-many meaning that a single ele-
ment written to an output port can be received by multiple recipients. When
an input port has multiple sources they are processed in a round robin fashion,
although in a future timestamps could be used for chronological ordering.

An important principle of CoCo is that ports never block nor in reading or
writing, because components should never block inside their looping step.

Two aspects, controlled in the XML file, specify the nature of the connection:
buffering and synchronization policy. Three types of buffering are supported
corresponding to recurring patterns in MR applications: for example a pipeline
with different generation-consumption rates, or a window of the last valid values.

– DATA: The connection has a buffer of length 1 and new incoming data always
overrides existing data even if it has not been read.

– BUFFER: The connection has a buffer of length as specified in the con-
figuration file. If the buffer is full new incoming data is discarded without
blocking.

– CIRCULAR: The connection has a circular FIFO buffer of length as specified
in the configuration file. If the buffer is full new incoming data overrides the
oldest one. A DATA buffering is equivalent to a CIRCULAR with length 1
except much more efficient.
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The connections support two synchronization policies: LOCKED and
UNSYNC. In the first case data access is regulated by mutexes while in the
second case there is no resource access control policy. A lockless policy could
be added providing high-efficient data access. The unsync policy applies for the
connections between components inside the same activity.

CoCo ports and connections operate via value-copy of the received content.
This solution is efficient for small sized types, and it allows to manage large
entities via shared pointer solutions. The issue with shared pointer solution is
that when the last user of the object releases the object this is destroyed. This is
not the optimal choice for large objects produced at high rates for the effect on
the memory manager. CoCo provides a pooled channel mechanism for supporting
efficiently the exchange of large entities such as images, point clouds or meshes.
Every slot of the pooled buffer has four states logically ordered: free, writing,
ready, reading. This means that when a writer needs to write an entity, first it
receives it from the pool, writes it and then it makes the entity available for
ready. Similarly a reader receives the entity and needs to notify when it has
finished using the content.

3.3 Scheduling

Execution of components in CoCo, and in a MR application in general, is periodic
with fixed rate or aperiodic being triggered by some event, being it internal or
external to the framework.

Whatever the nature of the component the execution takes place inside a
container called activity that can hold multiple components. An activity corre-
sponds, in practice, to an OS thread and, for this reason, it can be associated
to system priority and processor affinity. At every step of the activity all the
components are executed sequentially. Periodicity or triggering are specified at
the level of activity: a triggered activity is activated when any of the contained
components receive some data in a triggerable input port.

The XML configuration file of an application is organized per-activity each
with the contained components. The activity configuration comprises the peri-
odic nature as period in milliseconds or triggering. In addition one of the activity
can be marked as “main” for being associated to the main thread of the CoCo
application.

The component-activity separation allows the developer to reconfigure the
flow of execution at run-time, without the need to customize or recompile the
components. An improvement of the model discussed above relies on increasing
the granularity of components activation, that is supporting multiple rates inside
an activity or controlling the triggering.

3.4 Operations

In addition to the flow-based data exchange components can invoke operations
of other components with the guarantee that the invoked operation is executed
in a thread-safe manner: that is if the two components belong to the same thread
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no overhead is introduced otherwise a messaging system deals with the delivery
of the function call.

Each component can bind any of its C++ methods to an operation. An
operation is identified by a name and by the signature of the function it embeds.
A task’s operations can be called by any other task or can be enqueued in
the task pending operations list. Every time an activity resumes its execution,
either because the period timer expires or it is triggered by data reception, before
executing the main loop function onUpate, it execute all the pending operations.
The task invoking the function to enqueue an operation on another task can add
to the call a function to get the return value of the operation.

3.5 Peers

There are some situations in which the activity-component hierarchy of execution
is not enough, for this reason it is possible to nest components inside other
components. CoCo calls them peers. Peers are used to extend the functionalities
of a component preserving code encapsulation and reusability as they can be
instantiated multiple times for different components and the binding is decided
at run-time. Peers are components by themselves inheriting all the functionalities
such as ports, attributes and operations. The main difference relies in the fact
that peers execution is controlled by the owner component, and typically they
are used via operations. Thanks to operations there is no limits in the number
of peers that can be associated to a component or to another peer giving the
possibility to create a tree of peers with any desired depth or width.

3.6 Patterns

From the scenarios of MR applications it is possible to identify several patterns of
components usage. A common pattern is the one of sensor source that produces
a stream of data triggered by an external source such as a socket, an external
API or a USB file descriptor. A lightweight filtering component that needs to
use the sensor source data, can be placed in the same activity to reduce latency,
while heavier processing is better to be moved in a separate one. Another pattern
is the one of state holders with fast query such as KD-Tree in which updates are
expensive but queries are fast. In this case the update comes via an input port,
while queries are realized with an operation.

3.7 Profiling

The CoCo libraries provides also an utility to easily calculate execution time of
blocks of code. This functionality can be used by the user inside its components
to quickly evaluate the computational load and it has been inserted inside the
core of the library to obtain precise statistics on the components performance.
The component profiling is activated passing a specific flag to the launcher and
statistics of the execution are provided with a certain time interval. The mea-
surements include, for each component, the number of executions and the total
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execution time; mean and variance of the average computation and service time.
This last value is used to evaluate the feasibility of the application scheduling
because it represents the mean time between two activations of a component
and should be equal to the period for periodic components.

4 Visuo-Haptics for Mixed Reality

The CoCo framework has been used as the infrastructure for the realization of a
set of libraries, called CoCo Mixed Reakity (CoCoMR), targeting the creation of
visuo-haptics applications for MR scenarios. One of the complexity in this kind
of applications stands in the different rates at which each component executes. A
standard visuo-haptics application can be composed of a module reading frames
from a camera at 30 Hz or more, the graphics renderer module that runs between
60 to 120 Hz depending on the visualization nature and a module controlling the
haptic device running at least at 1 kHz. Three modules sets (Vision, Haptic and
Display) have been developed to target each specific scenario and thanks to
the CoCo features they can be combined and customized as desired at run-time.
CoCoMR contains also common utilities and a shared interface to allow different
components to exchange data through the CoCo ports. An overview of the core
modules is shown in Fig. 1.

Each module set’s components can be divided into two main categories: the
ones that interacts with the external world, either devices or other applications,
and the ones doing the internal computations. The components in the first group
are all executed periodically and their period can be adjusted at run-time to
synchronize it with a specific device or an external software (sources in the

Fig. 1. Overall view of modules and components
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computational graph). The second group, instead, contains the components that
perform the internal calculations and their execution is usually triggered by the
data received from the components in the first group.

The section continues with the features of each module that allow to under-
stand the span of applications covered by CoCo and the approach described in
the previous Concepts section.

4.1 Vision Module

The vision module provides the services for the computer vision part of a MR
application, that is the acquisition of image sources, the tracking of features or
fiducial markers, and, for the case of tele-presence applications, the streaming.

Components in the vision module exchange data structures that correspond
to images, RGB-D images, and camera parameters (intrinsics matrix and distor-
tion). In particular color images are encoded with the possibility of using several
color formats (grayscale, RGBA, YUYV and YUV420) with the aim of limiting
the conversion from sensors (typically producing images in YUYV) and toward
computer vision algorithms that employ often grayscale images. The YUV420 is
instead the layout of video compressors. GB-D data is stored as a combination
of the color image and a depth image (float or signed int16).

Source components are the following:

– CameraReader : using gstreamer or OpenCV captures camera frames and share
them with the other CoCo components.

– RgbdCameraReader : same as CameraReader, but captures also the depth
buffer. The component supports multiple cameras such as Kinect 360 or
One, Asus Xtion and Intel R200 directly through libfreenect, OpenNI or
libfreesense. For each camera there is a specific CoCo peer embedding the
different API for each vendor. If provided by the driver cameras are associ-
ated with the intrinsics.

– LeapReader : it interfaces the LeapMotion API with CoCo providing to the
other components position, orientation and fingers pose of the hands.

– StreamingReceiver : it is used to receive via TCP and decodes image and depth
streams in case of applications for tele-operation.

Filtering and sink components are:

– MarkerTracker : receives a camera buffer and produces in output the pose of
eventual markers present in the image.

– MeshReconstructor : receives the image and the depth buffers from RgbdCam-
eraReader and creates a mesh interpolating the missing points.

– StreamingServer : receives an image and/or a depth buffer and sends it via
TCP. Must be coupled with StreamingReceiver at the client side.
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4.2 Haptic Module

The haptic module provides haptic rendering that is the generation of force
feedback following the convention of computer graphics rendering [15]. There are
several challenges in haptic rendering tasks mainly related to the high rate of the
update loop, 1 kHz, and especially when the interacting surface is dynamically
updated as coming from a RGB-D camera. CoCo provides internally the support
for the haptic rendering of implicit surfaces or point clouds (used in [2]). Other
techniques can be integrated such as volumetric voxel models [16] or the 3DOF
spherical Proxy algorithm [17] for triangular meshes to external libraries such a
CHAI3D.

The rendering of implicit surfaces is based on the Salisbury algorithm [18]
that updates a contact proxy based on an implicit surface described as a distance
to the surface and the local gradient. CoCo supports the creation of procedural
implicit surfaces expressed on constructive solid geometry over building blocks
such as cylinders, planes and spheres. The HapticImplicitSurf component is
configured over a functional description of the surface, and then it tracks the
proxy over the surface, generating force feedback with friction parameters.

Contact rendering of live point clouds, or point-sampled meshes, is based on
the identification of the points around the proxy via KD-Tree and the creation of
a local surface from such points. The KDTreeBuilder component is responsible
for the creation of the KD-Tree either from a point cloud or the vertices of a
meshes provided by the adapter MeshReconstruction component. The Haptic-
Cloud component provides haptic rendering over these points using the KD-Tree
emitted by the KDTreeBuilder. This is an example of the large resource manage-
ment of CoCo: the KDTreeBuilder has an input port with the new point cloud
and inside the loop it performs the slow update, while, at the same time, the
last value of the KD-Tree is available over the output port. The port mecha-
nism allows the reuse of the values in the ports, much like happens in a classical
front-back buffer, but only in a more general way.

For a complex scene with multiple surfaces (or layered materials) it is possible
to coordinate different rendering components, or aggregate them inside a single
component, called HapticRenderer, that invokes the various renderers using the
peer mechanism. As discussed, anyway, the peers share the same activity, mean-
ing the same OS thread.

4.3 Display Module

The Display module has been developed to provide a reasonably good visual-
ization capability for MR applications with the main idea of displaying images
or point clouds produced by set of cameras looking more at performance than
display visual effects. There is no intention to replicate features found in more
sophisticated 3D engines, such as shadows or large complex models.

The display module is based on OpenGL 3.3 and it is responsible for
the rendering of 3D objects and the eventual images obtained from cameras.



348 E. Ruffaldi and F. Brizzi

It is composed of a single component and several peers, mainly due to the single-
thread nature of the OpenGL API. Multi-threaded OpenGL could be an option
but it is known to impact the performance of the overall 3D rendering, and multi-
threading can be exploited only for the memory transfer between CPU and GPU
buffers, e.g. for uploading point cloud or texture data. The recent introduction
of the Vulkan API has opened the way for multi-threading with GPU and it
could be an interesting enhancement for the graphics part of CoCo. The com-
ponent (GLManager) is the graphics manager and it is in charge of initializing
the OpenGL context and the rendering window across a variety of devices. The
OpenGL camera and every element that has to be rendered are associated to a
peer. GLManager queries the camera peer for the projection/view matrices and
then iterates over all the other peers calling their rendering function.

When instantiating the GLManager component it is possible to specify the
frame rate, setting the desired period in the activity containing it, the window
resolution and the visualization type covering 2D, 3D stereo or Oculus Rift DK2.
CoCoMR supports the creation of multiple visualization windows in Linux by
instantiating at run-time one GLManager component for each desired display.
Furthermore GLManager can render on texture and produce the result through
a port allowing the streaming of the visualization scene or using CoCoMR as the
input for some computer vision algorithms that requires the synthetic rendering
of the estimated entity (e.g. hand’s pose).

Camera. The GLCameraManager peer, one per GLManager at the moment,
is in charge of managing the OpenGL camera, specifying the initial position of
the camera through CoCo attributes and the type of camera through additional
peers. The camera system supports oblique projections because they emerge in
the common situation of head-tracking systems with precise co-location as in the
encountered system work [2], or multi screen systems [19]. Camera controllers
are also expressed as peers: first person shooter style camera (FPSCamera peer)
and arcball camera (ArcBallCamera peer). Camera can be moved either using
mouse and keyboard or by sending the desired position to the GLCameraMan-
ager dedicated port.

Camera Images. To render images provided by cameras two peers are avail-
able. GLImage: renders a 2D image in the background of the virtual world.
The image is scaled to fit the resolution of the window. GLRGBDImage ren-
ders the 3D scene obtained from the MeshReconstructor component. In case of
very noisy meshes it supports the possibility to average the position of the mesh
points among multiple sequential frames. Furthermore with the support of a
geometric shader it is possible to clean the scene removing the big triangles that
connect objects far from each others.

3D Objects. The GLEntity peer is used to render any mesh into the 3D world.
It supports all the standard formats and provides a set of basic shaders to sup-
port textures and lights. GLEntity exposes several attributes to set the object
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initial pose and scale, the eventual color if not present in the mesh file and the
possibility to run a subdivision algorithm on the object surface. GLEntity can
be further specialized associating custom peers to it. A peer, to be supported,
has to expose an operation named preRender that takes in input a pointer to the
GLEntity object. The operation is called by the component before the OpenGL
draw function and can be used to modify the standard behavior of the virtual
object. For example it could be possible to alter its color according to external
information, to change the mesh shape or to modify the pose.

The display module also supports the rendering of Universal Robot Descrip-
tion Format (URDF) objects from ROS through the GLUrdf peer. This feature
is very useful when performing robot teleoperation because it allows to easily
check that the camera mounted on the robot and the robot itself are correctly
registered. Details of registration are provided in the following section. Further-
more it allows to have a clear idea of the robot pose when the camera only
focuses the end-effectors. It can also be used to simulate a robot in a pure vir-
tual environment.

4.4 ROS Interface

The integration and interoperability with ROS is a mandatory requirement when
developing robotic applications. ROS has become the de facto standard in robot-
ics and many vendors provides the control software of their devices directly as
ROS nodes. Thanks to the simplicity and versatility of CoCo it is very straight-
forward to transform a component so that it can be used as a bridge between
ROS and CoCo. To do so the user has to simply create a CoCo component inside
a standard ROS package and compile it as a library. In this way the component
can declare a ros::NodeHandle object and use it to register or publish in topics.
Received data can be transformed to be exchanged trough CoCo ports. When
an application contains a ROS component a different launcher has to be used,
that is a ROS node embedding the same functionalities and the same behavior
of the standard launcher.

5 Transformations

Transformation between reference frames are a fundamental element of any MR
application in particular when multiple image sources are used together with
other tracking devices. CoCo approaches the problem by providing a general
transformation graph that is orthogonal to the other graphs of the CoCo
structure (components and scheduling). The nodes of the graphs are reference
frames that are connected via edges that express relative poses.

The components publish transformations between pairs of frames and these
are used to update the internal graph. The transformation query mechanism
is based on a path resolution over the graph: the transformation between two
frames corresponds to one of the paths between them in the transformation
graph. The path associated to each query is cached for future requests avoiding
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repetition of the path resolution and it is updated every time one of the edges
change.

The transformation information flows inside the computational graphs via
the CoCo ports as long as the rest of the data. The TransformationInterface is
a single component in the computational graph that receives all the transforma-
tions between frames, updates the internal graph, and propagates information
to the other components. Two type of propagation are supported, via callback
or operations. Each component can register a callback function to a query, that
is, when any of the edges in the query’s path changes and after the computa-
tion of the new transformation all the registered callbacks are called receiving
the new result. In addition TransformationInterface exposes an operation that
can be called by any other component to retrieve the transformation between
two frames. Internally a readers-writer lock is implemented to avoid concurrency
problems.

In contrast to ROS TF2 that is fully dynamic, CoCo allows to declare in
advance the structure of the graph, in particular describing the nature of the
edges that can be static, or dynamic, or projected from the 6DOF space to a
single axis. The declarative feature is useful during development for controlling
the different transformations, and, at the same time, at run-time, to optimize
the execution of the internal processing of the graph.

5.1 Robotics Support

Single axis is specifically useful for robotics or human tracking in which the
update value is the single joint value and the 6DOF transformation is the result-
ing application of a Denavit-Hartenberg transformation or equivalent. URDF
provides a hierarchical, joint based, description of the robot and it can be directly
loaded into the transformation graph.

5.2 Registration

The declarative approach allows for the automatic support for the registration
between two disjoint frames (A,B). The registration is obtained by the intro-
duction of a new temporary path between A and B that is produced by an
external source, e.g. a chessboard or a fiducial marker that is not present during
the execution. Multiple measures of the transformation between A and B are
accumulated during the registration phase, and then the final value is obtained
by 6DOF averaging.

This approach has been successfully used for registering the camera of a
robotic head wrt the rest of the robot body by placing a fiducial marker over
the robot arm and moving the arm (Fig. 2). In practice the approach is quite
flexible and can take into account multiple temporary paths.

5.3 Diagnostics

A fundamental aspect of the CoCo management of transformation is diagnostics.
First it is possible to serialize the graph over JSON at any time and to generate
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Fig. 2. Result of the registration of the Kinect with the robot kinematics. The image
part is a rendering of the Kinect point cloud, while the colored parts are meshes from
the URDF controlled by robot joints. Finally in the lower left the calibration fiducial
marker is visible.

a graphical representation of the graph using graphviz. Secondly it is possible
to access the graph via a Web based REST interface in which all frames and
the graph in general are accessible. The interface supports also Websockets for
continuous streaming of transformations.

This is specifically useful for interfacing CoCo with other frameworks such
as WebGL based frameworks or Unity.

6 Case Study

The CoCoMR libraries have been used for several applications both involving
haptic devices and robot tele-operation. In the following two examples will be
provided, showing the component structures and the performance measurements.

6.1 Visuo-Haptic Application

This section will describe how CoCoMR has been used in an application [2]
for virtual remote palpation examination. Figure 3 shows the different hardware
components involved in the setup. The whole system comprehends a Kinect 360
streaming via StreamingServer the RGB-D image of a mannequin laying on a
table and representing a patient; a 3-DOF haptic device; the Leap Motion sensor
to track the position of the hand and a 3D screen to visualize the remote scene.
The user moves the hand below the screen and his movements are captured by
the Leap Motion. The hand’s pose is used to display on screen the 3D model of
an hand superimposing it on the remote scene obtained through TCP (ZeroMQ)
from the Kinect. The position of the hand is also sent to HapticDeviceInterface,
an ad hoc component used to interact with the haptic device. HapticDeviceInter-
face communicates with a Simulink module performing the low level control of
the device. The module uses the hand position to place the end-effector exactly
below the user hand; in this way when the user lowers the hand and touches
the virtual surface it will find the end-effector of the device providing force feed-
back based on the indentation with the virtual remote scene. To improve the
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visual feedback the virtual hand gradually shifts its color towards a red shade
the deeper the end-effector is inside the surface; this is performed thanks to
the UpdateColor peer assigned to the GLEntity component responsible for the
virtual hand.

Kinect Frame

Remote site User site

Leap Frame

Haptic Frame

Fig. 3. The virtual palpation system. The hardware components are shown along with
their reference frames.

The system is composed of multiple components each one running at differ-
ent rates: 60 Hz the graphics, 30 Hz for reading images from the Kinect stream-
ing, 100 Hz the LeapMotion and 1 kHz the haptic interface. As shown in Fig. 3
each device produces its data in its own reference system; to allow the vari-
ous component to communicate the pose informations are all gathered by the
TransformationInterface component that provides to the other components the
position information in the desired reference frames. TransformationInterface
is also in charge of performing the calibration between the different reference
frames, in particular between the remote virtual scene, the hand pose and the
device end-effector pose. This is done by putting a marker on the belly of the
remote mannequin and its pose is associated with the one of the hand from the
Leap Motion, the user has also to grasp the haptic device end-effector so that it
is possible to assume that the three reference systems are aligned.

Figure 4 shows all the components and peers involved in the application.
The components are divided per activity and the scheduling policy is shown.
Given they high number of connections the lines have not been drawn but the
assumption is that connection with the same name are linked. This apart from
the pose transformations data that all flow trough TransformationInterface.
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Fig. 4. CoCoMR components involved in the visuo-haptic application. Port with the
same name type are connected to each other. Every poses pass through Transforma-
tionInterface to be transformed in the correct reference system.

Performance. The application run on an Intel PC (Core i7 4770R 3.2 GHz,
8 GB RAM, embedded GPU) running Ubuntu Linux 14.04. The estimated sen-
sor to display average latency is 75 ms, computed after synchronizing the robot
and graphics computers with the Precision Time Protocol (PTP). The Hapti-
cRender component was able to calculate the surface proxy position at 1 kHz
while some optimization were required to manage the kd-tree update at 30 Hz.
The KDTreeBuild component performed a filtering on the received points based
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Fig. 5. The Baxter robot, on the left, with the Kinect mounted on the head. On the
right the image displayed in the Oculus Rift

on the distance from the camera to reduce the mesh size and be able to run in
less than 33 ms. Another possible solution to speed up the computation is to use
a GPU-based algorithm.

6.2 AR for Teleoperation Application

This section discusses how the CoCoMR components have been combined to
create an augmented visual feedback during teleoperation of a remote robotic
device. The setup that will be described is part of an application [3] aimed at
providing a set of tools to teleoperate a robot in industrial tasks. In this appli-
cation a Baxter robot’s arm is controlled by an operator’s movements captured
with a wearable device. The operator wears an Oculus Rift DK2 showing the
remote scene, captured by a Kinect 360 placed on top of the Baxter head, plus
virtual objects to help him in the tasks completion, see Fig. 5.

The task to be performed by the operator is to grasp a bowl and move it
to a target position. The bowl to be picked is identified by a colored mesh that
overlay the real bowl in the rendered image. The virtual mesh helps the user to
identify the object which is of the same color of the table; in addition the mesh
color changes the closer the robot end-effector is to the bowl easing the task.
The target position, where to move the object, is indicated by another mesh of
the bowl allowing the operator to be more precise in the placement. The visual
feedback is augmented also by the 3D model of the Baxter robot, allowing the
user to know the position of the end-effector even when it exits from the Kinect
field of view. In addition it helps the operator predicting the remote robot arm
movements and its pose in the environment given the high movement latency of
the robot arm.
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Fig. 6. CoCoMR components involved in the teleoperation application. Port with the
same name type are connected to each other. Every pose passes through Transforma-
tionInterface to be transformed in the correct reference system.

The components structure is showed in Fig. 6. Several of the components
are the same of the ones used for the application described before, proving the
reusability capability of the framework. The ROSInterface component collects
from the ROS topics the information regarding the Baxter joints position and
the bowl location, obtained from the object recognition tabletop package2, and
delivers them to the TransformInterface component. The UpdateColorCalc peer
calculates the distance between the robot end-effector and the bowl to correctly
update its color. There are two GLEntity peers, one for each rendered bowl and
a GLUrdf peer to display the Baxter 3D model.

Performance. The application runs on quad-core Intel i7 CPU (2.3 GHz) and
a NVIDIA GeForce GT 650 MacBook Pro. The estimated sensor to display
average latency is 89 ms, computed after synchronizing the robot and graphics
computers with the Precision Time Protocol (PTP). Compared with the previous
application the computational load is lower and the execution is smooth also on
a laptop.
2 http://wg-perception.github.io/tabletop/.

http://wg-perception.github.io/tabletop/
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7 Conclusions

The diffusion of multicore platform is requiring new approaches for organizing
computation in particular in demanding tasks such as visuo-haptic mixed reality
applications. The paper has presented the CoCo framework as an approach for
addressing these challenges. The organization based on the three graphs allows
to tackle these challenges by providing flexibility and developer control while
hiding several low-level aspects.

There are several aspects that can be investigated starting from the present
work. One aspect is related to the analysis and optimization of the scheduling
resulting from the data flow and the user-defined schedule, this could give space
for the identification and reuse of common patterns and adaptation to a new
machine with different number of cores.

The second aspect is instead related to the support of GPUs in the data flows.
The most promising solution is based on CUDA mainly due to the number of
libraries in the vision and simulation world that provide optimization for such
library. The port mechanism could be easily extended for supporting CUDA
pointers, but it is needed to introduce an automatic mechanism for transferring
the content from/to the GPU when a connection is created between a GPU-
bound port and a CPU-bound port.

This proposed solution, currently under investigation, is clearly limited to
single-process architecture and it is also subject, in terms of scheduling, to the
policies of the CUDA driver.

Incidentally it is worth discussing that the extension of CoCo to multiprocess
is viable, provided an efficient mechanism for data exchange between components
in different processes is found. ZeroMQ is an optimal candidate, while reduced
or no-serialization could be employed for efficient data exchange.

Acknolwedgments. This work has been carried out within the framework of the
European Project REMEDI, grant number 610902, and the Tuscany Regional Project
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