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Abstract— Complex robotic architectures require a collab-
orative effort in design and adherence to the design in the
implementation phse. ArchGentTool is a collaborative architec-
ture generation tool which supports the design of the robotic
architecture in a multi-level fashion. It comprises high-level
conceptual analysis of the system to be designed, as well as low-
level implementation breakdown of its functional components,
acting complementary to the ROS framework. The tool facil-
itates reusability and expandability of the architecture to any
robotic system, as it can be adapted to different specifications.
A case study with the RAMCIP service robot is presented.

I. INTRODUCTION

Notwithstanding the plethora of laborious work that has al-
ready been conducted in the area of robotics applications, the
determination of a common architecture design framework
remains an active research topic. This statement is proved by
considering that the abundance of robotic software that has
been developed during the last decades, is tightly dependent
on the existing hardware specifications and their limitations
[5]. Therefore, the existing architecture of the systems can
not be expanded to follow the hardware advances and,
consequently the re-design of a system is mandatory in order
to embrace more functionalities.

Moreover, robot development is a combined field that
requires joined efforts of software and hardware engineers
for the design of a system architecture. Consequently, the
adoption of methodologies that tackle the problem partially
i.e independent software or hardware architecture, does not
comprise an ample solution during the implementation of
a robotic system. In accordance with the statement in [8],
“A good architecture model facilitates decision making and
acts as a mediator between requirements and final imple-
mentation.” However, it should be also stressed that a useful
architecture model is the one that determines a blueprint for
the developers to reproduce the envisioned system efficiently
and in a structural manner.

The architecture of a robotic system refers to how a
system is divided into subsystems, and how those subsystems
interact [10]. Following this definition, the proposed work
introduces the Architecture Generation Tool (ArchGenTool),
which is a stand-alone toolchain based on a Domain Specific
Language (DSL). It encompasses a consistent hybrid archi-
tecture design tool that facilitates joint collaboration during
the system design phase. The ArchGenTool consists of a
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Fig. 1: Outline of the ArchGenTool basic features

high-level conceptual description and diagrammatical repre-
sentation, as well as low-level implementation of software
and hardware entities, capitalizing on features illustrated in
Fig. 1 which supports:
� the high-level architecture that conceptually analyzes

the envisioned system;
� the low-level implementation that describes in detail the

functional components;
� the mapping of the functional components to ROS-wise

modularities, e.g. node, server, actionlib etc.;
� the logical analysis and diagnostics during the architec-

ture design;
� the collaborative design among developers;
� the straightforward expandability to capture additional

technical specifications;
� the detailed documentation generation in structured re-

port forms;

II. BACKGROUND

The technical literature from a robotic design aspect
classifies the architectural styles into three categories: hi-
erarchical, behavioral, and hybrid [10]. The hierarchical
model emphasizes on the high-level structure and restricts
low-level horizontal communications, retaining thus poor
flexibility in contemporary complex robotic systems. The
behavioral model is build directly on groups of software
modules that operate concurrently and interact with each
other, a strategy which is strictly objectives-specific and elim-
inates the extensibility of the high-level architecture on non-
trivial objectives. The hybrid architecture, which is the most
common method in contemporary robotic systems, combines
both reactive and deliberative structure and facilitates the
design of efficient low-level details with a connection to
high-level reasoning.

More specifically, this connection has been established
through the use of DSLs which provide solutions at the
level of abstraction of the problem domain, an extensive



discussion of which can be found in [3]. DSLs are typically
connected to a toolchain that determine the low-level (imple-
mentation level) in more detailed manner. Such a paradigm
is pursued by the ROBOTML [4], which is based on a
DSL to define a robotic ontology. The latter, is connected
with the Papyrus modeling plugin 1 of the Eclipse platform
capable of producing diagrammatic and code output of the
studied system based on the Unified Modeling Language
(UML). A more robotics-specific approach is BRIDE, which
has been developed in the context of the European Project
BRICS 2 and also comprises an Eclipse plugin. BRIDE
allows the developers to graphically design models of new
software components. BRIDE offered reusability capabilities
of the same component for designing different applications.
However, this was feasible only for systems with deteriorated
scale and, therefore, its reusability capacity is not possible
with models of larger portions of a system. Although hybrid
systems proved adequate to thoroughly determine the archi-
tecture of a robotic system, the connection among high and
low level depends on existing software platforms (Eclipse)
that lacks the immediacy with the robotics hardware.

A more sophisticated solution that tackles the connection
of high and low level architecture is the HyperFlex toolchain
[5]. This set of tools acts as a graphical design tool for soft-
ware architecture of robotic systems. It automatically gener-
ates the configuration files for various software frameworks
such as ROS [7], Orocos [1], and SCA. However, this is not
a stand-alone tool, yet it is also based on Eclipse software
and comprises a natural extension of BRIDE, by allowing
the reuse of models with a larger level of granularity and by
supporting all the communications paradigms provided by
Orocos. An extension to this work is the Robotics Run-time
Adaptation (RRA) framework [6], capable of partially resolv-
ing the variation points at deployment-time and postponing
the resolution of the remaining variation points at run-time.
RRA also reasons about the run-time variability to choose the
configuration that suits to the dynamic environment changes.
This work is defined in an adaptation model which is also
integrated in an Eclipse plugin. In addition, the same authors
in [8] introduced the Architecture Modeling and Analysis
Language (AMAL), which enables architecture development
based on custom requirements or by integrating existing
heterogeneous system paradigms. This method is relied on
the Open Semantics Framework and comprises part of the
SafeRobots ecosystem. The IDE of this language is also
based on the Eclipse framework.
ArchGentTool is a hybrid architecture design tool which
links the high-level abstraction of the system and the low-
level implementation details utilizing the ROS framework. To
the best of our knowledge, for the first time a stand-alone
architecture generation toolchain (Eclipse-independent) is
introduced herein, which due to its modular nature allows
reusability and scalability of the existing models into larger
systems.

1http://www.eclipse.org/papyrus/
2http://www.best-of-robotics.org

III. CONCEPT

The ArchGenTool concept is based on the handling of
the DSL in a human-readable textual form. It involves
the decomposition of the system’s specification in pieces,
much like a software program and allows to perform the
collaboration by means of the code versioning using the
GitHub web platform. Each developer can experiment with
the architecture design, integrating the comments from others
using branching, keeping track of the changes along time,
and even executing verification tests on its own proposed
changes. Quality measures of the architecture can be ob-
tained and the designers can assess the progress of the
process, such as detailing the implementation or specifying
timing requirements. While the textual representation is use-
ful for collaboration, the visual component is important for
understanding the relationships of the specified components,
for reporting and for sketching.

The underlying DSL is based on a component-based struc-
ture of the robotic architecture in which component instances
exchange data via typed ports. The component semantics
with ports, parameters and sub-components is similar to what
is present in SysML although here is simplified taking into
account the common patterns found in Robotics.

The ArchGenTool follows a toolchain approach in process-
ing the architecture specification, much like a compiler with
several backends and intermediate analysis steps. All the in-
puts are specified in YAML that is a text-based light-markup
language widely used in ROS and OpenCV applications 3.
This description format is lighter than full markup languages
such as XML but at the same time allows to specify variety
of structures such as lists and dictionaries. The input YAML
files are loaded and used for building the internal DSL model.

Then intermediate stages are executed to analyze the
model, to compute the dependencies and to apply the
required verifications. The verification stage is aimed at
identifying disconnected or partially connected components,
type mismatches, and it gives the possibility to higher level
diagnostics associated to semantics of the component types
(e.g. filter vs actuation components). One example of the
analysis stage is constituted by the timing evaluation that
identifies or infers the timing of the components and can
support bandwidth-latency estimates inside the architecture
(see V-B).

Finally the architecture is transformed by the backend(s)
of the tool into visual representation, in structured report
form and in a self-standing packaged YAML representation.
These operations can be applied to the whole architecture or
can be limited to a given layer.

Two layers of the architecture have been defined: the
high-level functional architecture module and the low-level
implementation architecture module. The first deals with
functional components (see Sec. IV), presenting their role,
the interdependencies and the data being exchanged. The
low-level module is instead aimed at describing the tangible
architecture implemented over a robotic middleware, ROS

3http://yaml.org/
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Fig. 2: Workflow. On top the input YAML files are trans-
formed into a high-level architecture. The architecture is then
extended with the implementation details. Then, analysis
phases can be applied before the execution of the backends.

in this case, while preserving the connection with the high-
level module. The connection between the high-level and
the low-level modules is considered important because it
allows to keep track of the conceptual flow, and whenever
applicable, the fulfillment of functional specification require-
ments, defined in the high-level module when considering
the actual system implementation. The overall structure of
the ArchGenTool is shown in Fig. 2 presenting the steps of
the toolchain.

IV. HIGH-LEVEL MODULE: FUNCTIONAL
SPECIFICATIONS

The high-level module of the ArchGenTool is responsible
to decompose the robotic system into its basic elements by
identifying all the building blocks required for the materi-
alization of the system and their dependencies in terms of
inputs and outputs. The functionalities of the system, which
have been established during the requirements identification
phase, are organised in the ArchGenTool as the “Group
of Components”. Each “Group of Components” gathers all
the core elements related to a specific task and, therefore,
can be decomposed into the “Functional Components”. The
latter correspond to the core software elements, which are
the building blocks to be developed for the construction
of the robotic system. Each “Functional Component” is
associated with descriptive information of the Functionality,
the Operational Requirements and the Performance indica-
tors. The Performance indicators are each described with
the target criteria for their fulfillment, i.e the “Accuracy”
and the “Execution Time”. The “Functional Components”
are then connected by means of “Inputs” and “Outputs”
that induce a dependency network between them. These
dependencies can be considered in an aggregated fashion

and inherited among the “Groups of Components”.“Inputs”
and “Outputs” are intended in the digital and physical sense
allowing to describe the different types of exchanges between
the “ Functional Components”. In the description of the
architecture each component lists a series of input/output
among the components described in a conceptual manner.
The inputs to a component can refer to a specific output of
given component, to all the outputs of a given component
or all the outputs of a component group. Figure 3 exhibits
an example diagram as output of the high-level module,
where the diagram associated to an “Environment Modeling”
group of components for an assistant robot operating in
human populated environments. This group refers to the
environment understanding based on the sensing information
stemming from visual sensors.

V. LOW-LEVEL MODULE: IMPLEMENTATION DETAILS

The implementation details module ArchGenTool provides
explicit details for each one of the “Functional Components”.
Complementary to the high-level module of the architecture,
this module studies the interactions among software ele-
ments, their frequency of execution and the specifications of
their communication. The implementation level describes the
components that realize the architecture as expressed in the
chosen robotic software middleware. ArchGenTool supports
the connection between the high-level functional architecture
module and the low-level implementation module for keep-
ing track of requirements, description and adherence to the
high-level plan. Therefore, it is apparent that the low-level
module of the architecture design should be expressed in a
framework similar to the implementation framework under
which the development of the core functional elements will
be realized. In order to achieve this, a mapping procedure that
facilitates the dual correspondence of “Functional Compo-
nents” and data types exchanged between each other is con-
ducted. In the current implementation of the ArchGenTool
the chosen middleware is ROS because it presents a large
ecosystem of packages and features, and ease of testing how
the designed architecture is mapped into a real computational
graph.

A. Mapping Architecture to ROS

The ROS mapping routine creates a component graph
consistent with the graph of the high-level module. This
graph retains the connection between the components of the
two levels. In the ROS framework, the computation unit is the
ROS node. Each high-level functional component is mapped
to one or more ROS nodes that, when seen as a whole,
expose the same interface of the high level module of the
architecture.

The ArchGenTool uses a ros-type-mapper, which is a third
party YAML file designed to describe the mapping between
the high-level types to the ROS standard types, each provided
with the name of the message type (e.g. sensor msgs/Image)
and a comment about characteristics of the message (e.g.
the camera resolution). This is essential due to the fact that
it allows the developers to identify, from the architecture
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Fig. 3: Example of component diagram derived from the high-level module concerning a specific Component Group that
describes robot mapping and environmental modeling. The components of the Group are shown in white color, while the
external components that may belong to other groups are illustrated in gray color.

design phase of the system, the complementary to the basic
software components, resulting to an orthogonal system
construction. This way intermediate parsers and plugins are
avoided retaining thus the modularity and reusability of the
developed software.
ROS type communication messages for some of the com-
ponents identified in the high-level module will be al-
ready available as standard ROS message types, e.g. sen-
sor msgs/Image for a high-level type “Time stamped syn-
chronized RGB and Depth images”, while others will be
created with details filled-in at later stages of development.
An additional attribute of the ArchGenTool is that the
comments specified in the ros-type-mapper allow to track the
progress and the mapping procedure during the architecture
design process.
The ArchGenTool creates the implementation component
graph from the high level components and then performs
a validation of the provided architecture. Specifically, it
verifies that all components have been mapped. Each high-
level functional component is visualized in a separate graph
where all the implemented ROS nodes are shown with their
description. Additionally, the ROS nodes that provide or
consume data are also exhibited with their name. Edges
describe the connection with the data exchanged provided
as edge label, with an asterisk when all the topics produced
by the input node are exchanged with the current processing
node. Figure 4 illustrates an example of an implementation
graph. Currently all the communication between components
is assumed to be performed via standard ROS semantics,
but additional semantics could be added via attributes of the
edges connecting the components.

B. Timing Specification

One important aspect of the architecture design is the
definition and analysis of timing interaction between com-
ponents. In the ROS framework, for example, some nodes
have a periodic behavior in publishing topics, such as the
case of sensor nodes or planners of arm joint values. Other
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Grasp_Controller
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Fig. 4: High-level graph (a) and implementation graph (b)
containing a single component. The box in the center is the
ROS node implementing the component with the name in the
middle. Incoming and outgoing ROS components are shown
on left and right of (b). Edges show the exchanged data.

nodes are instead responding to changes in the subscribed
topics and produce output correspondingly. In general nodes
are not specifying timings and they can be obtained in the
running system from the topics statistics.

The ArchGenTool supports the specification and analysis
of timing behavior associated to the implementation level.
Each functional component can be classified in three behav-
iors: periodic, event-driven, on-demand. Periodic means that
the node produces outputs or in general computes at a given
rate, i.e. a node in ROS; event-driven means that output is
produced when some of the inputs are changed, i.e. an action
lib in ROS; and finally on-demand means that answers to
requests, i.e. a service in ROS. The tool performs a graph
annotation phase propagating the timing behavior and the
update rate of components from source components to sink



components when the period is omitted. The annotated graph
can be visually presented by coloring functional components
depending on the resulting period. In this way the overall
timing structure can be understood by the developer in a
compact way. The support for computation times for a high-
level plan of latency is demanded to future updates.

VI. TOOL IMPLEMENTATION

ArchGenTool is implemented as a Python package with
single command line script that allows to process the YAML
specification, analyze the model and generate outputs de-
pending on the chosen backend. In document-output mode
the tool produces a Word document, in YAML-output mode
the tool produces a single validated YAML document that
expresses the whole architecture and finally in Web-output
mode the tool generates a statically browsable representation.
The backends share a graph generation phase based on
Graphviz that allows to produce diagrams of the various
levels of the architecture providing single detailed diagrams
per functional component, per functional group or even of
the overall architecture. The visual layout of the generated
graphs is also controlled for readability and clarity.

The typical multiuser scenario is based on the storage of
the YAML documents in a Git repository starting from one
single YAML document and then extending and decompos-
ing it while the number of components and functional groups
grows. Syntax verification and architecture validation can be
provided also as a Continuous Integration service connected
to the git repository.

VII. RAMCIP CASE STUDY
The capacity of ArchGenTool for the architecture design

of a robotic system is assessed on the “Robotic Assistant for
MCI patients at home” (RAMCIP) project 4. As a collabora-
tive EU-funded research project RAMCIP involves expertises
from several partners that contribute to the definition of the
system architecture. RAMCIP is a complex robotic system
aiming to establish a service robot, capable of proactively
assisting older persons with Mild Cognitive Impairment or
early dementia stages, in a wide range of daily activities,
being at the same time an active promoter of the user’s
physical and metal health. To achieve these objectives the
robot will be equipped with a mobile platform upon which
an arm will be mounted with a dexterous hand attached to its
end point. An elevation mechanism is foreseen to allow the
robot to reach both higher and lower locations with the same
robotic arm. Additionally, the robot will also bear display and
projective augmented reality mechanisms facilitating human-
robot communication. Through this short description it is
concluded that the RAMCIP robot is a complex yet modular
system the architecture design of which is a laborious task.

The overall architecture is described by 9 main YAML
files, one per-group, plus supporting YAML files that provide
details on the ROS type mapping and timing. Different
decompositions are possible depending on the size of the
teams and responsibilities.

4http://www.ramcip-project.eu

A. High-level

The high-level functional architecture has been designed
starting from the definition of project Use-Cases and func-
tional requirements. These elements brought to the identifica-
tion of conceptual modules further decomposed in functional
components. After the initial phase the architecture has been
specified using ArchGenTool backed by GitHub for data
storage and collaboration.

The resulting high-level architecture comprises 10 groups
that have been decomposed in 61 functional components
(6.1 in average per group with a maximum of 21). For
completeness the groups are: Robot State, Environment State,
Environment Model, Human State, Human Model, Cognitive
Reasoning, Robot Task Scheduler, Robot Action Planner
and Communication Planner. The diagram of the groups
and their internal components is shown in Fig. 5. In this
stage the ArchGenTool has been used for identifying all the
connections printing out them and provide a big picture of
the overall architecture: it is also useful for working with
stub components that can be later filled-in. The components
are interconnected with a total of 138 connections (avg.
2.2), with 2.3 inputs and 1.8 outputs in average: sources
correspond to sensors or user inputs, and sinks to actuators
and visual feedback modules.

B. Implementation

After the definition of the high-level specification each
functional component has been analyzed for mapping to
a ROS implementation understanding which components
can be taken from the ROS library or needs to be further
developed. This analysis can be performed by each group-
leader behind the components, detailing along time the sub-
components used for the realization. Mapping types are in-
stead agreed and entered cooperatively in the shared mapping
file. The content produced by the nodes is mapped from
the high-level to the ROS message types, producing, in this
example a mapping of 138 entities. Further refinements have
been performed during the later stage of integration detailing
and amending elements of the architecture.

VIII. DISCUSSION

The toolchain is based on a specific computational graph
model that balances description complexity for easing design
and at the same time supporting the translation to a mid-
dleware such as ROS. At this stage it is worth discussing
the differences between the computational graph model of
ArchGenTool and other systems such as ROS and the System
Modeling Language (SysML) that is widely used for describ-
ing software and hardware systems [2]. The computational
graph is a directed graph in which typed data flows between
nodes along edges. Edges are not connecting nodes directly
but by means of ports: every node exposes a set of input and
output ports, and edges connect the ports of different nodes.
The difference between the three approaches is in how these
ports are specified and connected.
In SysML nodes (parts in the Internal Blocks Diagrams)
expose ports, called flow ports, each described with a name



Current Robot State Current Environment State

Current Environment Model

Current Human State

Cognitive Reasoning

Robot Task Scheduler

Robot Action Planner

Robot HardwareRobot Localization

Environment Large Object TrackingGlobal Mapping

Human Tracking

Manipulation Planner and Control

Robot Arm Workspace Identification

Object Detection / Identification

Grasp Planner

Imaging

Human Identification

Robot Sensors

High-level assistance decision maker

Hierarchical spaces / objects modelling

Human activity recognition

Vital signs Monitoring

Human action recognitionFine grained body motion analysis

Hand-over Controller

Human posture recognition

Task Planner

Task Integrator

Library of capabilities

Grasp Controller

Robot NavigationLower-body pHRI planner

Fig. 5: Diagram of the RAMCIP component groups and their internal components, where the Human Model and
Communication components have been removed for space motivations.

and type, and then connections specify the connecting nodes
and ports, constrained to have the same type. In ROS every
node has ports, that is published/subscribed topics, with name
and type, then the connections link nodes by matching the
name of the topic. Being it a dynamic and flexible publisher-
subscriber system, topic names are matched without involv-
ing nodes. In ArchGenTool every node has ports with a single
property, the type, and then the connections are specified
expressing the input node and port. The high-to-low level
mapping performed by ArchGenTool maps every high node
into a set of ROS implementation nodes with fully specified
connection to keep the high-low correspondence.
The implementation level describes only the software inter-
connections but, based on the same description methodology
and tooling, it is possible to extend it to take into account the
(1) the transformation graph of the architecture and (2) the
physical partitioning of the architecture, that is the mapping
to the different parts of the robot system such as the computer
units involved.

IX. CONCLUSIONS

The approach proposed by ArchGenTool allows to ex-
periment with different solutions while receiving feed-
backs about architectural characteristics. The textual-based
toolchain is aimed to reduce design time and tool-
ing while the diagram generation provides the top-
view understanding of the architecture. The tool is pro-
vided as an Open Source ROS package available at
https://github.com/eruffaldi/archgentool.

There are clearly several possible improvements. Some
are related to the expressiveness of the language, mainly for
dealing with physical specifications and system partitioning,
but also for resource sharing and implementation variants.
Others are related to the import, much like libraries, of

existing ROS packages and node. Finally others are related
to the analysis performed over the architecture, such as
improved timing, data exchange rates and adherence to
requirements. This could allow the use of ArchGenTool with
other component based frameworks with tighter requirements
such as CoCo [9].
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