
SOMA: An OpenMP Toolchain For Multicore Partitioning

Emanuele Ruffaldi
Scuola Superiore Sant’Anna

Pisa, Italy
e.ruffaldi@sssup.it

Filippo Brizzi
Scuola Superiore Sant’Anna

Pisa, Italy
fi.brizzi@sssup.it

Giacomo Dabisias
Scuola Superiore Sant’Anna

Pisa, Italy
g.dabisias@sssup.it

Giorgio Buttazzo
Scuola Superiore Sant’Anna

Pisa, Italy
g.buttazzo@sssup.it

ABSTRACT
Advancements in multicore platforms enabled the develop-
ment of complex embedded systems incorporating algorithms
that were typically executed on high-performance worksta-
tions. Although many solutions exist today for supporting
software development on multicore platforms, they rarely
take timing constraints into account. This work presents
a toolchain aimed at guaranteeing real-time constraints into
parallel OpenMP code. This toolchain, called SOMA (static
OpenMP multicore allocator), uses code profiling for esti-
mating the multicore timing requirements and produces a
static schedule for a set of parallel tasks. The toolchain
is implemented using the source-to-source translation capa-
bilities of CLang. Performance results are provided on a
computer vision application.

CCS Concepts
•Computer systems organization→ Real-time languages;
•Software and its engineering→ Translator writing sys-
tems and compiler generators;

Keywords
OpenMP; Real-time; Multicore; Clang; Scheduling; Refac-
torization; Profiling

1. INTRODUCTION
The last years have seen the transition from single core ar-
chitectures towards multicore architectures in the desktop
and server environments and lately also in small devices as
smartphones, tablets and embedded platforms. High Per-
formance Computing (HPC) has been able to follow this
trend studying advanced algorithms and building libraries
to exploit such an additional computational power.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC 2016,April 04-08, 2016, Pisa, Italy
Copyright 2016 ACM 978-1-4503-3739-7/16/04. . . $15.00
http://dx.doi.org/10.1145/2851613.2851720

On the other hand, real-time systems, despite their massive
and increasing use in many application domains as com-
puter vision, robotics, simulation, video encoding, lack a
general methodology to exploit more than one single com-
puting core. While in the literature there exist many exam-
ples of multi-core real-time scheduling algorithms, there is
a limited availability of multicore tools in this area. This
is a serious limitation considering that real-time application
requirements are continuously growing.

This paper presents a framework aimed at supporting the
parallelization of code while taking timing constraints into
account. This objective is pursued by starting from the
paradigm of the OpenMP [7] annotation and transforming
the program in a way that it can support multicore static
scheduling based on virtual partitioning [5].

The SOMA framework is organized as a toolchain that op-
erates a source-to-source transformation for improving the
schedulability of parallel code moving from the run-time best
effort of OpenMP implementations to a profile based static
scheduling. The input source code is first analyzed, pro-
filed, and then refactored to generate a statically specified
schedule that is executed by means of a run-time support.

In the practice of homogeneous multicore development there
are several libraries or languages that allow taking advan-
tage of the available computing power [19]. In the con-
text of C/C++ development, OpenMP [7] allows to easily
transform a sequential application to a parallel one without
requiring an explicit thread management. The OpenMP
approach is interesting also for research and it has been
extended for supporting heterogeneity, as OpenMP 4 [4].
What is typically missing in OpenMP implementations is
the management of timing constraints, for programming soft
or hard real-time applications [20].

While the OpenMP run-time allocates tasks to a threading
pool with one thread per core, this work proposes to ana-
lyze the workflow and timing of an OpenMP application for
creating static schedules. Several theoretical studies and al-
gorithms have been proposed in the literature for providing
solutions for scheduling tasks on multi-core architectures [8],
typically distinguished between global and partitioned ap-
proaches. In global algorithms the highest priority task is
taken from a single queue and allocated to a core, while in
partitioned schemes the task is first allocated to a core and

then scheduled. This work follows the approach of virtual
partitioning [5] that produces a partitioned schedule from
the precedence graph of an application expressed as a direct
acyclic graph.

The adaptation of an OpenMP application to a custom sched-
ule requires code analysis and source-to-source transforma-
tion. These functionalities can be found in research frame-
works such as the Mercurium [2] compiler of OMPSS [9] or
the Rose Compiler [18]. For the present work, instead, the
Clang compiler of the LLVM framework [16] has been cho-
sen. Clang provides a standard-compliant front-end for the
C, C++ and Objective-C programming languages, relying
on LLVM as back-end. In addition it is designed to be highly
compatible with GCC, having a similar command line inter-
face and sharing many flags and options. Four main reasons
guided this choice:

1. It has proven to be faster and less memory consuming
in many situations1;

2. It has a modular library based architecture allowing
the programmer to easily embed Clang’s functionali-
ties inside its code;

3. It allows performing code analysis, information extrac-
tion and, most important, source-to-source transla-
tion, not available in GCC at the time of development;

4. It has a strong and usable implementation of the Ab-
stract Syntax Tree (AST).

Given the previous premises, this work has the following
contributions: (1) it proposes a scheduling mechanism for
multicore application written in OpenMP and (2) presents a
toolchain based on Clang for partitioning real-time OpenMP
applications on multicore platforms.

The paper is structured as follows. Section 2 presents the
related work. Section 3 illustrates the overall design of the
system. Section 4 describes the scheduling algorithm. Sec-
tion 5 presents the run-time support. Section 6 describes a
case study and, finally, Section 7 states our conclusions.

2. RELATED WORK
There is some previously related work [14] which aims at
scheduling directed acyclic task graphs onto a cluster of
machines, taking into account execution anda data transfer
times. In our case the the schedule is produced for a single
parallel machine and no data transfer times are considerated
since we are working in a shared memory system.

StarPu [1] is a nice example of a parallelization tool over
heterogenous resources. It is a runtime layer that provides
an interface unifying execution on accelerator technologies
as well as multicore processors. It also provides a scheduler
which can allocate task queues on single workers; some basic
scheduling policies are also already predefined, but in our
case we need a timing guarantee on the tasks deadline which
is not present in this framework.

Is is also important to mention RT-OpenMP [10] which is
similar to SOMA, but it is more a theoretical work than

1http://clang.llvm.org/features.html#performance

a real implementation. In our case we tried to address a
smaller OpenMP directive set to be able to use the Toolchain
on actual C++ code.

An extention of OpenMP with new directives to support
asynchronous parallelism has been develeped at the Barcelona
Supercomputing Center (BSC) which is called OMPSS [9].
Asynchronous parallelism is enabled in OMPSS by the use
data-dependencies between the different tasks of the pro-
gram. The OpenMP task construct is extended with the
in (standing for input), out (standing for output) and inout
(standing for input/output) clauses to this end. They allow
to specify for each task in the program what data a task
is waiting for and signaling is readiness. OMPSS can also
be understood as new directives extending other accelerator
based APIs like CUDA or OpenCL. OMPSS has not been
chosen because it is based on its own source-to-source trans-
lator and the development is limited to the BSC. The aim
of this project instead is to interface the parallel capabili-
ties to a community-driven system as Clang. This will allow
to benefit from the main contributors of Clang and other
plugins of Clang.

Lately appeared also automatic parallelization tools; these
softwares allow to automatically transform a sequential code
into an equivalent parallel one, like the Intel C++ compiler
and Parallware [13]. Sadly none of these software imple-
ments the solutions provided by the literature to tackle the
requirements of real-time system.

3. FRAMEWORK DESIGN
The SOMA toolchain employs source-to-source transforma-
tion as the foundation for hybrid static and run-time analy-
sis. The analysis generates a static schedule for the threads
to be parallelized over a multicore system obtained from the
profiling of the target program. The result of the SOMA ex-
ecution is a new source-code paired with a scheduling plan
aimed at optimizing the execution on a machine with a spec-
ified number of physical cores.

The proposed transformation starts from an OpenMP anno-
tated source: the code is transformed via source-to-source
manipulation both for profiling instrumentation and for gen-
eration of the final program. OpenMP has been chosen be-
cause it has minimal annotation overhead, it is implemented
in the GNU GCC compiler and being based on pre-processor
directives allows ignoring pragmas when no OpenMP sup-
port is needed.

SOMA is organized as a toolchain in the sense that each
step is supported by a separate tool that exchanges with the
others XML files or instrumented source code, allowing the
replacement or further analysis of the results.

The high-level structure of the toolchain is depicted in Fig-
ure 1 and includes the following steps: (1) Code Analysis,
(2) Instrumentation for profiling, (3) Profiling, (4) Sched-
ule generation, (5) Instrumentation for execution and (6)
Run-time support.

In the figure boxes represent an operation while ellipses data
such as C++ source code or XML files. The left branch of
the graph is devoted to profiling, first presenting the in-
strumentation and then profiling execution based on a given

hardware configuration and application specific input data.
The right branch is devoted to the instrumentation for ex-
ecution producing the final application. The execution step
at the bottom uses the computed schedule.

3.1 Code Analysis
The starting point of the toolchain is the OpenMP anno-
tated code where OpenMP pragmas provide hints for paral-
lelization. Although the current tool has been developed to
analyze C++ source code, it can easily be modified to an-
alyze C code, or even to annotation schemes different from
OpenMP.

The first phase of the toolchain is the analysis of the source
code with the aim of generating a graph-based representa-
tion of the program that is further analyzed by the following
phases. This phase is obtained by analyzing the C++ Ab-
stract Syntax Tree (AST) as it is made available from the
compiler after the semantic phase. From the AST all the
relevant information of each OpenMP pragma are extracted
and inserted in the graph structure. Then the graph is trans-
lated into an XML description.

The graph produced from the first stage of the code analysis
is associated to the code structure and it consists of a tree
of OpenMP pragmas that are rooted at the functions that
contain at least a pragma. Some pragma statements do con-
tain other statements such as parallel, section or task, and
also for loops have been analyzed for extracting the variable
used and the type of loop.

This graph provides a partial view of the program execution
due to two aspects. The first aspect is the code execution
flow that is induced by the pragmas: the tree graph obtained
from the code analysis has to be converted into an execution
flow that explains how the parallel tasks branch and join
thanks to the OpenMP barriers. A step of the code analysis
takes the code graph and produces the execution graph for
further analysis.

The second aspect is related to the fact that with the static
analysis it is not possible to identify the execution paths
and functions invoked by the program inside a given paral-
lel task. This is the main reason why SOMA uses a hybrid
approach: the profiling task is not only computing the tim-
ing but also the function dependencies at run-time.

In terms of implementation the source-to-source transforma-
tion for profiling and analysis are based on Clang. At the
time of the preparation of this work OpenMP was present in
a branch of Clang and it supported the parsing of OpenMP.
A patch has been added to support custom clauses inside
pragma declarations. This patch allows to add specific in-
formation to each task such as deadline, activation time and
period.

3.2 Visualization
For debug purposes a tool for visualization has been devel-
oped. This tool processes the model graphs and produces
visual representations thanks to the Graphviz software. Fig-
ure 2 shows the original code parallel structure after the pro-
filing, displaying for each component execution time statis-
tics.

OMPParallelDirective@87

execution time: 2394.77

variance: 0.0

OMPSectionsDirective@89

execution time: 2394.77

variance: 0.0

OMPSectionDirective@91

execution time: 122.45

variance: 0.0

BARRIER

sx()

execution time 1.38964

OMPSectionDirective@118

execution time: 2272.32

variance: 0.0

BARRIER

main()

execution time 2394.87

dx()

execution time 6.46202

OMPParallelForDirective@152

for(j = 0; j < farm_size; j ++)

execution time: 6.46187861272

variance: 0.114157872909

OMPParallelForDirective@169

for(j = 0; j < farm_size; j ++)

execution time: 1.38963855422

variance: 0.0312951662279

Figure 2: Parallelism graph. It is possible to see the
dependencies of the parallel nodes jointly with their
execution time, variance and function call hierarchy.

3.3 Profiling
To produce a good schedule the framework needs informa-
tion about the tasks, in particular their computation times.
The best way of getting this information is to profile at run-
time the sequential version of the input code. In general
OpenMP profiling has been investigated with probing as in
ompP [12], or via proposed changes to the API [15]. For
the present work a custom profiler has been implemented
measuring each pragma block and the function call depen-
dences. By using the same source-to-source tool for profiling
and final execution instrumentation, the custom profiler im-
plementation is compact in the implementation, tailored to
the regions of interest for SOMA, and more efficient than
parsing extensive log files from other tools.

To be profiled the code needs to be instrumented; in the
original code, calls to a run-time support are added to cal-
culate the execution time of each task, track the caller id
of each function and store them in a log file. Tasks can be
nested in each other, hence the outermost tasks computa-
tion time includes the computation times of all its sub-tasks;
in other words, the sum of all the tasks’ computation times
could exceed the total computation time of the program. To
prevent this problem a method has been designed to enable
each task to keep track of the computation time of its chil-
dren in order to obtain its effective computation time. This
method also allows to keep track of the caller identity of
each pragma and function, which is always either another
pragma or function.

At the end the profile log contains for every task the follow-
ing information: (1) the total time of the task, from when
it was activated since it terminates; (2) the time of all its
nested tasks; (3) the identifier of the pragma or function
that called the task; (4) in the case of For task, the number
of iterations.

The previously instrumented code is executed several times.
At each iteration the algorithm produces, for each function
and pragma, their execution time and, in case of a #pragma
omp for, the number of executed cycles. This data is gath-
ered during each iteration and then the mean value of the
execution time, executed loops and variance for each node

Profiling
(N variations)

Source Code
(C++ with OpenMP)

Code Analysis
and Profiling

Instrumentation

Inject Task
Creation Code

Pragma
Structure
(XML)

Aggregate
Results

Code Instrumented
for Profiling

(C++)
Build

(gcc/clang)

Profiling Application
(executable)

Profiler
Runtime

(C++ Library)
ExecutionInput

Profile Log
(XML)

HW info

Aggregate
Results

Profile Stat
(XML)

Code graph
(XML)

Flow graph
(XML)

Compute Schedule Tasks Schedule
(XML)

Execution
HW configC++

with Tasks
Build

(gcc/clang)
Built Application

(executable)

Thread
Control Runtime

(C++ Library)

Figure 1: High-level structure of the SOMA toolchain: the diagram shows data elements (dashed) and
operation (solid) of the toolchain. On the left the source code is entered, then the top branch deals with
the instrumentation for profiling, profiling execution (in the large block), then preparation of the scheduling.
The lower branch prepares the C++ code for the new scheduling by organizing the code in tasks, and finally
the schedule plan (in XML) is passed to the new executable.

is saved in a log file.

4. SCHEDULING
The problem of finding the best possible schedule on a multi-
core architecture is known to be an NP hard problem. Given
N tasks and M computing cores, the problem consists of cre-
ating K, possibly lower than M, execution flows in order to
assign each task to a single flow. Each flow represents a
sequential execution that needs to be allocated to a core.
To find a good solution a recursive algorithm has been de-
veloped which, by taking advantage of a search tree, tries
to explore all possible solutions, pruning “bad” branches as
soon as possible.

To limit the running time of the algorithm due to the high
dimension of the search space, a timer has been added to
stop the computation after a certain amount of time given
as input. At each level of the search tree a single task is
considered; the algorithm inserts the task in each possible
flow, and, if the partial schedule is feasible, this process con-
tinues until all the tasks have been considered. To check if
the partial solution is feasible the algorithm calculates the
cost of the actual solution and compares it with the best so-
lution found so far, checks that the number of created flows
is less than a predefined number and that the timer has not
expired; if all these requirements are met, the branch con-
tinues its execution, otherwise it is pruned.

Once all the tasks are considered and all the requirements
are fulfilled, the actual solution is compared with the optimal
found so far and, in case updated, the best solution found is
compared with the current one and possibly updated. Two
solutions are compared using a simple heuristics that con-
siders as a cost the computation time of tasks, flows and set
of flows present in the solution. Given this metric a solu-
tion is better than another if it has a lower cost. Having a
low flow cost means that the flows are well balanced; it is

also important to notice that the algorithm is working in a
breadth-first manner so that the number of flows is conser-
vative, meaning that the lowest possible number is used to
find the best solution.

There is a small variation of the algorithm when a task con-
taining a #pragma omp for is encountered. In this case
the algorithm tries to split the for loop as much as possible
creating new tasks which are added to the task list.

It is worth noticing that solution could in principle not be
schedulable, since the algorithm does not take care of prece-
dence relations, but tries only to find the cheapest possible
allocation. This could happen both if the algorithm checks
all solutions finding the best one or if the algorithm termi-
nates due to the timer limitations. In the second case it is
possible to rerun the algorithm in order to check more so-
lutions and possibly get a new schedule since the tasks are
taken at random from a list.

To check the feasibility of a solution a second algorithm has
been implemented following a modified version of the par-
allel Chetto&Chetto algorithm [6]. This algorithm works in
two phases: the first one sets the deadline for each task,
while the second one sets its arrival time. To set the dead-
lines, the algorithm sets the deadline of all the task with no
predecessors to the deadline given in input; after that it re-
cursively sets the deadline of all tasks having all their succes-
sors deadline set as the minimum of the difference between
the computation time and the deadline of the successor.

In the second phase the algorithm sets the arrival time of
every tasks with no predecessors to zero; after that it recur-
sively sets the arrival time of all tasks, having the arrival
time of all predecessors set as the maximum between all the
arrival time of the predecessors belonging to the same flow
and the deadline of all the tasks that are assigned to a dif-
ferent flow. This is due to the following fact: let τj be a
predecessor of τi, written as τj → τi, with arrival time ai

and let Fk be the flow τi belongs to. If τj ∈ Fk, then the
precedence relation is already enforced by the previously as-
signed deadlines so it is sufficient to ensure that task τi is
not activated before τj . This can be achieved by ensuring
that:

ai ≥ aiprec = max
τj→τi,τj∈Fk

{aj}.

If τj /∈ Fk, we cannot assume that τj will be allocated on
the same physical core as τi, thus we do not know its precise
finishing time. Hence, τi cannot be activated before τj ’s
deadline dj , that is:

ai ≥ diprec = max
τj→τi,τj /∈Fk

{dj}.

The algorithm checks that all the deadlines and arrival times
are consistent and, if so, produces a scheduling.

It is important to notice that there is no guarantee that
the produced schedule is the best possible one. The only
guarantee is that is will fulfill all the timing deadlines. A
parallel version of this algorithm has also been developed in
order to check more solutions at the same time.

5. EXECUTION
This section discusses the instrumentation and run-time sup-
port for the program execution.

5.1 Instrumentation for execution
The framework needs to be able to isolate each task and ex-
ecute it in the thread specified by the schedule; to do so new
lines of code are added in the original code to transform the
old pragmas in a collection of atomic independent concrete
tasks.

In this phase the functions are not considered as tasks and
they will not be affected by the instrumentation. This is due
to the fact that functions have no parallel semantic them-
selves and they can be simply executed by the tasks that
invoke them, without affecting the semantic and improving
the efficiency. The idea of this phase is to transform each
pragma block of code into a function that will be called by
the designated thread. One possibility is to take the code of
the pragma, remove it from the function where it is defined
and put it in a newly generated function; this way may be
feasible with Clang but it is very complicated because of the
presence of nested pragmas.

The other possibility, used in the framework, is to exploit,
once again, the property of the pragmas to be associated
with a scope. In C++ it is possible to define a class inside
a function if the class is contained in a scope. By exploit-
ing this feature each pragma statement has been enveloped
inside a new local class declaration; in particular, it consti-
tutes the body of a function defined inside the new class that
also embeds a reference to all the variables used in the task
but declared outside.

In the case of a for pragma, the framework needs to perform
some additional modifications of the source code. Usually a
for is split into more threads in the final execution so that
the for declaration has to be changed to allow the iterations

to be scattered between different threads. Two variables
are added to the for declaration: an identifier used to dis-
tinguish the different threads and the number of threads
concurring in the execution of the for. After the definition
of the class, at the end of the scope, the framework adds
a piece of code that instantiates an object of the created
class and passes it to the run-time support. The object will
be collected by the designated thread that will invoke the
custom function that contains the original code, running it.

5.2 Run-time support
The aim of the run-time is to instantiate and manage the
threads and to control the execution of the tasks. In par-
ticular it must allocate each task on the correct thread and
must grant the precedence constraints between tasks. The
run-time must have a very low execution overhead in order
to satisfy all the task’s timing constraints. For this reason
the run-time does no time consuming computations and all
its allocation decisions are made based on what is written in
the schedule. All the heavy calculations to decide the tasks
allocation have been already done by the schedule algorithm
before the program execution and the produced schedule is
taken as input by the program. Figure 3 shows the structure
of the run-time support.

W
hi

le
 L

oo
pTask

Job
(Task + Mutex)

Instrumented
Code

Run-Time

Job Queue

Thread

Run Job

Synchronize
on Barriers

Schedule
Thread Pool

Figure 3: Run-time execution structure. The run-
time support takes as input the schedule and a list of
jobs to execute corresponding to the task previously
obtained. It spawns the threads and allocates for
each of them a queue where each job is inserted.

6. CASE STUDY
The test application consists of a face recognition algorithm
in OpenCV that analyzes two videos which resembles the
stereoscopic view of a person. To detect the faces a cas-
cade multiscale detector has been used, a haar Detector.
This algorithm uses Haar features and AdaBoost technique
to detect the faces [17]. The application tries to recognize
each face in each video frame and then prints a circle in
the frame to locate it. The test videos have been produced
in three different formats: 480p, 720p and 1080p; in each
video two different people move around in a closed environ-
ment. For each different video format a separate schedule
has been produced, given that the execution time of the

tasks can fluctuate heavely when the data size changes. If
the execution flow is not deterministic the profiler will catch
this behavior if execute nough times; a mean execution time
is produced in order to take into account that possibility.
With this method only small variations in the execution can
be safely captured, but since the objective of this work is
to work with real-time jobs, we can assume that there are
no meaningful code branches. Figure 2 shows the parallel
structure of the application together with the profiler infor-
mation. This is not a hard-real time application for two
reasons: first because in the case of missing a deadline no
serious consequences occurs but mainly because the execu-
tion time for the delivering of an image depends on the data
and it is not fixed. This last property is actually interesting
because it allows to see how the framework manages and
control non deterministic behavior.

The performance of SOMA has been analyzed in comparison
to an OpenMP implementation with a varying number of
available cores and problem size. The GNU GCC OpenMP
implementation has been chosen as a reference due to the
lower quality of the CLang implementation at testing time.
The tests have been executed on a machine with an Intel
Core i7-3930K, a 6-core CPU running at 3.20 GHz, with
12MB cache and 24GB RAM running Linux Ubuntu 13.04,
Clang 3.2 and gcc 4.8.1.

Table 1 presents the completion time of the various applica-
tions, while Table 2 shows their service time (gap between
the delivery of a parsed image) with the variance. All these
numbers have been calculated as an average of five identical
executions.

The completion value of the OpenMP and SOMA executions
are almost the same and this is a good result, meaning that
the proposed framework does not introduce more delay than
OpenMP, which represents the state of the art of parallel
programming. What is even more important and interesting
is that the variance of the service time in the SOMA scenario
is always the lowest. This is a very important achievement
for real-time requirements because it means that this ap-
proach can guarantee real-time constraints.

The considerations stated above are also confirmed by the
comparison between 4(b) and 4(b) where service times are
shown for each concurrent thread of the two applications.
In the SOMA case we have not only a lower variance for
each thread, but also that the mean service time varies less
between different threads and the physiological outliers are
more compact towards the mean value.

7. CONCLUSIONS
This presented a framework for automatic generation of par-
allel real-time code from an annotated sequential one. Code
is manually annotated with OpenMP pragmas to specify
parallel sections and their dependencies and is then inserted
in the framework’s toolchain. In a first step, the source code
is profiled and information about each parallel component
is extracted and used to create a custom, machine specific,
scheduler. The annotated code is then instrumented to be
able to run it with the new schedule. The framework has
been tested with a soft real-time computer vision application
demonstrating its capability of satisfying real-time require-

(a) OpenMP

(b) SOMA

Figure 4: Boxplot of the service time of each thread
of the application for the 1080p image. Execution
time on the Y axis, while number of threads (cores)
in the X axis.

ments. The source code will be published online together
with the paper.

There are some known issues in this framework when dealing
with complex code structure and parallel components. The
solution to this problems will be to substitute OpenMP with
a custom set of pragma comments to be able to handle more
scenarios and to add all kind of desired information inside
the code. Anyhow OpenMP has been very helpful to test the
feasibility of the approach. As a future work, we plan to ex-
tend the framework for handling hard-real time applications
and source code with more sophisticated parallel structures.
Examples of applications scenarios are the ones involving
high-rate human-robot haptic interaction coupled with sim-
ulations [11, 3], or the case of autonomous driving vehicles
in which real-time sensor fusion units are integrated with
intention recognition modules for risk assessment: in this
case there are real-time requirements for producing outputs
within a bounded delay, and, at the same time, the struc-
ture of the computation is non-trivial due to the number of
sensors and behavior models.

8. REFERENCES
[1] C. Augonnet, S. Thibault, R. Namyst, and P.-A.

Wacrenier. Starpu: a unified platform for task
scheduling on heterogeneous multicore architectures.

Sequential OpenMP Soma

Tseq[s] Tc(6)[s] ε(6) =
Tseq

6Tc(6)
Tc(6)[s] ε(6) =

Tseq

6Tc(6)

480p 750 133 0.94 134 0.93
720p 3525 627 0.94 629 0.93
1080p 8645 1536 0.94 1539 0.94

Table 1: Completion time of the programs at the variation of the video quality.

Quality Sequential OpenMP Soma
mean variance mean variance mean variance

480p 0.2823 0.1984 0.3034 0.0016 0.3065 0.0005
720p 1.3263 0.1968 1.4257 0.0125 1.4117 0.0065
1080p 3.2524 0.1567 3.4901 0.0256 3.4990 0.0185

Table 2: Average service time in seconds for the various video qualities and the different algorithms. OpenMP
and SOMA applications both executed on six threads.

Concurrency and Computation: Practice and
Experience, 23(2):187–198, 2011.

[2] J. Balart, A. Duran, M. Gonzàlez, X. Martorell,
E. Ayguadé, and J. Labarta. Nanos mercurium: a
research compiler for openmp. In Proceedings of the
European Workshop on OpenMP, volume 8, 2004.

[3] M. Bergamasco, S. Perotti, C. Avizzano, et al.
Fork-lift truck simulator for training in industrial
environment. In Emerging Technologies and Factory
Automation, ETFA. The 10th IEEE International
Conference on, 2005.

[4] O. A. R. Board. Openmp application program
interface 4.0, 2013.

[5] G. Buttazzo, E. Bini, and Y. Wu. Partitioning
real-time applications over multicore reservations.
Industrial Informatics, IEEE Transactions on,
7(2):302–315, 2011.

[6] H. Chetto and M. Chetto. Some results of the earliest
deadline scheduling algorithm. IEEE Transactions on
software engineering, (10):1261–1269, 1989.

[7] L. Dagum and R. Enon. Openmp: an industry
standard api for shared-memory programming.
Computational Science & Engineering, IEEE,
5(1):46–55, 1998.

[8] R. I. Davis and A. Burns. A survey of hard real-time
scheduling for multiprocessor systems. ACM
Computing Surveys (CSUR), 43(4):35, 2011.

[9] A. Duran et al. Ompss: a proposal for programming
heterogeneous multi-core architectures. Parallel
Processing Letters, 21(02):173–193, 2011.

[10] D. Ferry, J. Li, M. Mahadevan, K. Agrawal, C. Gill,
and C. Lu. A real-time scheduling service for parallel
tasks. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2013 IEEE 19th,
pages 261–272. IEEE, 2013.

[11] A. Frisoli, L. F. Borelli, C. Stasi, M. Bellini,
C. Bianchi, E. Ruffaldi, G. Di Pietro, and
M. Bergamasco. Simulation of real-time deformable
soft tissues for computer assisted surgery.
International Journal of Medical Robotics and
Computer Assisted Surgery, 1(1):107–113, 2004.

[12] K. Fürlinger and D. Skinner. Performance profiling for
openmp tasks. In Evolving OpenMP in an Age of
Extreme Parallelism, pages 132–139. Springer, 2009.

[13] H. Gomez-Sousa, M. Arenaz, O. Rubinos-Lopez, and
J. A. Martinez-Lorenzo. Novel source-to-source
compiler approach for the automatic parallelization of
codes based on the method of moments. In Antennas
and Propagation (EuCAP), 2015 9th European
Conference on, pages 1–6. IEEE, 2015.

[14] U. Hönig, W. Schiffmann, and L. Rechnerarchitektur.
A comprehensive test bench for the evaluation of
scheduling heuristics. In Proc. 16th IASTED
International Conference on Parallel and Distributed
Computing and Systems (PDCSâĂŹ04), pages
437–442, 2004.

[15] M. Itzkowitz et al. An openmp runtime api for
profiling. OpenMP ARB as an official ARB White
Paper available online at http://www. compunity.
org/futures/omp-api. html, 314:181–190, 2007.

[16] C. Lattner and V. Adve. Llvm: A compilation
framework for lifelong program analysis &
transformation. In Code Generation and Optimization,
2004. CGO 2004. International Symposium on, pages
75–86. IEEE, 2004.

[17] R. Lienhart and J. Maydt. An extended set of
haar-like features for rapid object detection. In Image
Processing. 2002. Proceedings. 2002 International
Conference on, volume 1, pages I–900. IEEE, 2002.

[18] D. Quinlan. Rose: Compiler support for
object-oriented frameworks. Parallel Processing
Letters, 10(02n03):215–226, 2000.

[19] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel.
Mapping on multi/many-core systems: survey of
current and emerging trends. In Proceedings of the
50th Annual Design Automation Conference, page 1.
ACM, 2013.

[20] R. Vargas, E. Quinones, and A. Marongiu. Openmp
and timing predictability: a possible union? In
Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition, pages 617–620. EDA
Consortium, 2015.

