
SOMA: An OpenMP Toolchain For Multicore
Partitioning

E. Ruffaldi, G. Dabisias, F. Brizzi, G. Buttazzo

Scuola Superiore Sant’Anna

Pisa,Italy

ACM/SIGAPP Symposium on Applied Computing
April 6, 2016

Introduction Framework Test Future Steps

Context and Motivations

Real-time systems are moving towards multicore architectures. The
majority of multithread libraries target high performance systems.

I Real-time applications need strict timing guarantees and
predictability.

Vs

I High performance systems try to achieve a lower
computation time in a best effort manner.

There is no actual automatic tool which has the advantages of
HPC with timing constrains.

Introduction Framework Test Future Steps

Objectives

Starting from a parallel C++ code, we aim to create:

I a way to visualize task concurrency and code structure as

graphs.

I A scheduling algorithm, supporting multicore architectures

and guaranteeing real-time constraints.

I A run time support for the program execution which

guarantees the scheduling order of tasks.

Introduction Framework Test Future Steps

State of the Art

StarPu1

I Parallelization tool over heterogenous resources.

I Scheduler.

I Drawback: no timing guarantee.

RT-OpenMP2

I Real-time OpenMP

I Drawback: mainly theoretical.

OMPSS3(Barcelona Supercomputing Center)

I Asynchronous parallelism and data-dependency.

I Drawback: difficult to be extended.

1C. Augonnet, et al.. Starpu: a unified platform for task scheduling on heterogeneous multicore architectures.
Concurrency and Computation: Practice and Experience, 2011.

2D. Ferry, et al.. A real-time scheduling service for parallel tasks. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2013.

3A. Duran et al. Ompss: a proposal for programming heterogeneous multi-core architectures. Parallel
Processing Letters,2011.

Introduction Framework Test Future Steps

Design Choices

Requirements

I Specification of the parallel tasks’ structure.

I Specification of the real-time parameters.

I Tool to instrument the code.

OpenMP

I Standard in High Performance Computing.

I Minimal code overhead.

Clang

I Provides code analysis and source to source translation
capabilities through AST traversal.

I Patched to support custom OpenMP pragmas: deadline and
period.

Both are open source and supported by several vendors.

Introduction Framework Test Future Steps

Design Choices

Requirements

I Specification of the parallel tasks’ structure.

I Specification of the real-time parameters.

I Tool to instrument the code.

OpenMP

I Standard in High Performance Computing.

I Minimal code overhead.

Clang

I Provides code analysis and source to source translation
capabilities through AST traversal.

I Patched to support custom OpenMP pragmas: deadline and
period.

Both are open source and supported by several vendors.

Introduction Framework Test Future Steps

Basic Example

1 v o i d work (i n t bar)
2 {
3 #pragma omp p a r a l l e l f o r
4 f o r (i n t i = 0 ; i < bar ; ++i)
5 {
6 // do s t u f f
7 }
8 } ;
9 i n t main ()

10 {
11 i n t bar ;
12 #pragma omp p a r a l l e l p r i v a t e

(bar)
13 {
14 #pragma omp s e c t i o n s
15 {
16 #pragma omp s e c t i o n
17 {
18 // do s t u f f (bar)
19 work (bar) ;
20 }
21 #pragma omp s e c t i o n
22 {
23 // do s t u f f (bar)
24 work (bar) ;
25 }
26 } // i m p l i c i t b a r r i e r
27 } // i m p l i c i t b a r r i e r
28 }

Parallel code structure

Introduction Framework Test Future Steps

General Design

SOMA: Static OpenMP Multicore Allocator

Scheduler
Instrumentation

for Parallel
Tasks Execution

Instrumentation
for Profiling

Profiler

Run-Time
Support

Executable

C++
Instrumented

for Profile

XML
Parallel

Structure
& Times

C++
OpenMP

C++
with Task

XML
Schedule

Introduction Framework Test Future Steps

Instrumentation for Profiling

Custom profiler to time OpenMP code blocks and functions.

I Extracted information: execution time, children execution
time, caller identifier, for loop counter.

I Output as XML file.

1 . . .
2 //#pragma omp p a r a l l e l f o r
3 i f (P r o f i l e T r a c k e r p r o f i l e t r a c k e r = P r o f i l e T r a c k P a r a m s (3 , 5 , bar − 0))
4 f o r (i n t i = 0 ; i < bar ; ++i)
5 {
6 // do s t u f f
7 }
8 . . .
9 //#pragma omp s e c t i o n

10 i f (P r o f i l e T r a c k e r p r o f i l e t r a c k e r = P r o f i l e T r a c k P a r a m s (1 2 , 25))
11 {
12 // do s t u f f (bar)
13 work (bar) ;
14 }
15 . . .

Introduction Framework Test Future Steps

Profiling

I The profiled code is

executed N times and

statistics are obtained.

I Profile statistics can be

associated to different input

arguments.

Profiler

C++
Instrumented

for Profile

XML
Parallel

Structure
& Times

Executable

Input

XML
Profile Log

Aggregation

Run

Hardware
Info

N iteration

Introduction Framework Test Future Steps

Scheduler

The input is the profiling XML with the tasks’ deadline and period.

I The problem is NP-complete
I all possible schedules have to be

checked,
I high computational load.

I It is possible to set a fixed amount
of computation time.

I Scheduler parallel version: better
results in a fixed amount of time.

XML
Parallel

Structure
& Times

Hardware
Info

Scheduler

XML
Schedule

Output as XML file with the instructions for the real-time
execution.

Introduction Framework Test Future Steps

Scheduler: Algorithm

The scheduler assigns each task to a flow using a tree. Each flow
will be allocated to a different virtual processor (thread).

I The algorithm splits each pragma for block.
I When a leaf is reached (complete schedule), the algorithm

checks if the current solution is better then the previous one.

1

1 2 1 2

1 32 1 32 1 23 1 32 1 32

Task

Thread

Thread

Flow

Introduction Framework Test Future Steps

Scheduler: Feasibility

The produced schedule does not account for precedence
relations.

I Checking feasibility: modified version of Chetto&Chetto
(1990).

I For each task we set :

I the deadline starting from the last one;
I the arrival time starting from the first and accounting for

precedence relations.

I If all deadline are positive and each arrival time is less then
the corresponding deadline the schedule is produced.

Introduction Framework Test Future Steps

Instrumentation for Real-Time Execution

Pragma block −→ Custom task.

I Pragma code block is embedded in a function call.

I Nested function declaration not allowed in C++.

I Declare the function in a scoped class.

I Out of scope variables are caught.

I The nested pragma structure is not changed.

I Each for statement is rewritten in order to allow it to be split.

Introduction Framework Test Future Steps

Real-Time Execution

Final Executable

XML
Schedule

Run-Time Support

Thread
Pool

Thread

Run JobJob Queue

Synchronze

While Loop

Tasks

Job
(Task +
Mutex +

Thread ID)

Introduction Framework Test Future Steps

Test Objectives

System framework evaluation

I Evaluate the instrumented program’s correctness.

I Compare the OpenMP and SOMA completion time for

performance evaluation.

I Measure framework’s overhead.

I Check system’s predictability.

Introduction Framework Test Future Steps

Test Case

Face recognition algorithm in OpenCV using Multiscale Cascade
Detector (Viola Jones algorithm).

I Input are two stereo

camera videos.

I Frames are

dispatched in blocks

of N frames.

OMPParallelDirective@87

execution time: 2394.77

variance: 0.0

OMPSectionsDirective@89

execution time: 2394.77

variance: 0.0

OMPSectionDirective@91

execution time: 122.45

variance: 0.0

BARRIER

sx()

execution time 1.38964

OMPSectionDirective@118

execution time: 2272.32

variance: 0.0

BARRIER

main()

execution time 2394.87

dx()

execution time 6.46202

OMPParallelForDirective@152

for(j = 0; j < farm_size; j ++)

execution time: 6.46187861272

variance: 0.114157872909

OMPParallelForDirective@169

for(j = 0; j < farm_size; j ++)

execution time: 1.38963855422

variance: 0.0312951662279

Introduction Framework Test Future Steps

Results

I Test on an Intel i7@3.2 GHz with 6 cores and HT running

Linux Kernel 3.8.0.

I Statistics are calculated over 5 executions.

I Tested with three different scheduler configurations: 4, 6 and

12 cores.

I Video properties:

I 2 people in each.

I 1 minute length.

I 24 FPS.

I Resolutions : 640x360, 1280x720, 1920x1080

Introduction Framework Test Future Steps

Results: Execution Times

Sequential OpenMP SOMA

Tseq[s] Tc(n)[s] ε(n) =
Tseq

nTc (n) Tc(n)[s] ε(n) =
Tseq

nTc (n)

480p(4) 750 195 0.96 195 0.96

720p(4) 3525 921 0.96 921 0.96

1080p(4) 8645 2271 0.95 2270 0.95

480p(6) - 133 0.94 134 0.93

720p(6) - 627 0.94 629 0.93

1080p(6) - 1536 0.94 1539 0.94

480p(12) - 98 0.64 92 0.68

720p(12) - 427 0.69 426 0.69

1080p(12) - 1043 0.69 1035 0.70

Introduction Framework Test Future Steps

Results: Mean Service Time

Mean service time (gap between the delivery of a parsed image) in
seconds.

I SOMA variance < OpenMP variance

Sequential OpenMP SOMA
mean Ts mean Ts mean var mean Ts mean var

480p(4) 0.2823 0.2966 0.0014 0.2919 0.0004

720p(4) 1.3263 1.3955 0.0087 1.3884 0.0009

1080p(4) 3.2524 3.4399 0.0101 3.4369 0.0075

480p(6) - 0.3038 0.0016 0.3023 0.0006

720p(6) - 1.4241 0.0111 1.4206 0.0064

1080p(6) - 3.4906 0.0238 3.4983 0.0197

480p(12) - 0.4223 0.1421 0.4148 0.0044

720p(12) - 1.9426 0.0862 1.9228 0.1334

1080p(12) - 4.7394 0.3956 4.6915 0.6277

Introduction Framework Test Future Steps

Results - Comments

All the results of the framework are comparable with OpenMP’s.

I Almost same performance.

I SOMA has a lower service time variance→ more predictable.

I Low overhead as OpenMP.

The framework achieved the two main requested properties to work

with real-time applications.

I More realistic test cases will be tested.

Introduction Framework Test Future Steps

Future Steps

Creation of custom pragmas and clauses.

I Too many pragmas

I No possibility to specify real-time constrains

Better scheduler heuristics.

I Save time by early pruning.

Implement a probabilistic profiling step.

I Some functions may not be called.

Add the possibility to extend the concept to heterogeneous
computing.

Introduction Framework Test Future Steps

Thank you!

I Questions?

Email:
fi.brizzi@sssup.it

	Introduction
	Framework
	Test
	Future Steps

