2\ Scuola Superiore
')Sant’Anna

di Studi Universitari e di Perfezionamento

SOMA: An OpenMP Toolchain For Multicore
Partitioning

E. Ruffaldi, G. Dabisias, F. Brizzi, G. Buttazzo

Scuola Superiore Sant'Anna

Pisa,ltaly

ACM/SIGAPP Symposium on Applied Computing
April 6, 2016

Introduction

Context and Motivations

Real-time systems are moving towards multicore architectures. The
majority of multithread libraries target high performance systems.

» Real-time applications need strict timing guarantees and
predictability.

Vs

» High performance systems try to achieve a lower
computation time in a best effort manner.

There is no actual automatic tool which has the advantages of
HPC with timing constrains.

Introduction

Objectives

Starting from a parallel C4++ code, we aim to create:
> a way to visualize task concurrency and code structure as
graphs.

» A scheduling algorithm, supporting multicore architectures

and guaranteeing real-time constraints.

» A run time support for the program execution which

guarantees the scheduling order of tasks.

Introduction

State of the Art

StarPut
» Parallelization tool over heterogenous resources.
» Scheduler.
» Drawback: no timing guarantee.
RT-OpenMP?
» Real-time OpenMP
» Drawback: mainly theoretical.
OMPSS3(Barcelona Supercomputing Center)
» Asynchronous parallelism and data-dependency.
» Drawback: difficult to be extended.

e Augonnet, et al.. Starpu: a unified platform for task scheduling on heterogeneous multicore architectures.
Concurrency and Computation: Practice and Experience, 2011.

2p. Ferry, et al.. A real-time scheduling service for parallel tasks. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2013.

3A. Duran et al. Ompss: a proposal for programming heterogeneous multi-core architectures. Parallel
Processing Letters,2011.

Introduction Framework Test Future Steps

Design Choices

Requirements
» Specification of the parallel tasks' structure.
» Specification of the real-time parameters.

» Tool to instrument the code.

Introduction

Design Choices

Requirements
» Specification of the parallel tasks' structure.
» Specification of the real-time parameters.
» Tool to instrument the code.

OpenMP

» Standard in High Performance Computing.
> Minimal code overhead.
Clang

» Provides code analysis and source to source translation
capabilities through AST traversal.

» Patched to support custom OpenMP pragmas: deadline and
period.

Both are open source and supported by several vendors.

Introduction

0~NOUAWN

©

Basic Example

Framework

void work(int bar)

{
#pragma omp parallel for
for(int i = 0; i < bar; ++i)

//do stuff

irit main ()

int bar;

#pragma omp parallel
(bar)

{

#pragma omp sections

private

#pragma omp section

//do stuff (bar)
work (bar);

#pragma omp section

//do stuff (bar)

work (bar);
} //implicit barrier
} //implicit barrier

Test

Parallel code structure

main()
execution time 14

OMPParalleiDirective@15
execution time: 14.0
variance: 0.0

OMPSectionsDirective@17
execution time: 14.0
variance: 0.0

execution time: 8.0 execution time: 6.0
variance: 0.0 variance: 0.0

BARRIER

Future Steps

execution time 7

OMPParallelForDirective®5
for(i=0;i<bar; i ++)
execution time: 7.0
variance: 1.0

Introduction Framework Test Future Steps

General Design

SOMA: Static OpenMP Multicore Allocator

: XML
Instrumentation | tc++t | Profiler parallel
for Profiling s Structure
& Times

Carar
OpenMP

Instrumentation
for Parallel
Tasks Execution

C++

i Scheduler

Run-Time
Support

XML
Schedule

Executable

Introduction Framework Test Future Steps

Instrumentation for Profiling

Custom profiler to time OpenMP code blocks and functions.

» Extracted information: execution time, children execution
time, caller identifier, for loop counter.

» Output as XML file.

1 ..

2 #pragma omp parallel for

3| if(ProfileTracker profile_tracker = ProfileTrackParams(3, 5, bar — 0))
4] for (int i = 0; i < bar; ++i)

5

6 do stuff

7|}

9 #pragma omp section

10| if(ProfileTracker profile_.tracker = ProfileTrackParams (12, 25))
11

12 do stuff (bar)

13 work (bar);

14}

15

Introduction Framework Test Future Steps

Profiling

C++
Instrumented Executable
for Profile

» The profiled code is

executed N times and

statistics are obtained.

Hardware
Info

XML
Profile Log

» Profile statistics can be

associated to different input Aggregation

arguments.

XML
Parallel
Structure

& Times

Introduction Framework Test Future Steps

Scheduler

The input is the profiling XML with the tasks’ deadline and period.

» The problem is NP-complete XML
> all possible schedules have to be Parallel Scheduler
Structure
checked, & Times
> high computational load.
> It is possible to set a fixed amount

of computation time. Hardware o

» Scheduler parallel version: better Info Schedule
results in a fixed amount of time.

Output as XML file with the instructions for the real-time
execution.

Introduction Framework Test Future Steps
Scheduler: Algorithm

The scheduler assigns each task to a flow using a tree. Each flow
will be allocated to a different virtual processor (thread).
» The algorithm splits each pragma for block.
» When a leaf is reached (complete schedule), the algorithm
checks if the current solution is better then the previous one.

Thread

Thread -

Framework

Scheduler: Feasibility

The produced schedule does not account for precedence
relations.

» Checking feasibility: modified version of Chetto&Chetto
(1990).
» For each task we set :

» the deadline starting from the last one;
» the arrival time starting from the first and accounting for
precedence relations.

» If all deadline are positive and each arrival time is less then
the corresponding deadline the schedule is produced.

Framework

Instrumentation for Real-Time Execution

Pragma block — Custom task.

v

Pragma code block is embedded in a function call.

» Nested function declaration not allowed in C++.

» Declare the function in a scoped class.

v

Out of scope variables are caught.

v

The nested pragma structure is not changed.

v

Each for statement is rewritten in order to allow it to be split.

Introduction Framework Test Future Steps

Real-Time Execution

Final Executable Run-Time Support

Thread
Pool

Job
(Task +
Mutex +
Thread ID)

Thread

.

Job Queue

Synchronze

Test

Test Objectives

System framework evaluation

» Evaluate the instrumented program’s correctness.

» Compare the OpenMP and SOMA completion time for

performance evaluation.
» Measure framework's overhead.

» Check system's predictability.

Introduction

Test Case

Framework

Test

Future Steps

Face recognition algorithm in OpenCV using Multiscale Cascade
Detector (Viola Jones algorithm).

» Input are two stereo

camera videos.

» Frames are
dispatched in blocks

of N frames.

main()
execution time 2394.87

OMPParallelDirective@87
execution time: 2394.77
variance: 0.0

OMPSectionsDirective@89
execution time: 2394.77
variance: 0.0

Pz N
18
execution time: 122.45 execution time: 2272.32
variance: 0.0 variance: 0.0
< —
. S

BARRIER

BARRIER

()
execution time 1.38964

OMPParallelForDirective@169

for(] = 0; < farm size; | ++)

execution time: 138963855422
variance: 0.0312951662279

ax()
execution time 6.46202

OMPParallelForDirective@152

variance: 0114157872909

Test

Results

> Test on an Intel i7@3.2 GHz with 6 cores and HT running
Linux Kernel 3.8.0.

v

Statistics are calculated over 5 executions.

v

Tested with three different scheduler configurations: 4, 6 and

12 cores.

v

Video properties:

» 2 people in each.

» 1 minute length.

» 24 FPS.

» Resolutions : 640x360, 1280x720, 1920x1080

Test

Results: Execution Times
Sequential OpenMP SOMA
Toegls] | Te(n)ls] | e(n) = 5755 | Te(n)ls] | e(n) = 7%
480p(4) 750 195 0.96 105 0.96
720p(4) 3525 921 0.9 921 0.96
1080p(4) 8645 2071 0.95 2270 0.95
480p(6) - 133 0.94 134 0.93
720p(6) - 627 0.94 629 0.93
1080p(6) - 1536 0.94 1539 0.94
480p(12) - 98 0.64 92 0.68
720p(12) - 427 0.69 426 0.69
1080p(12) - 1043 0.69 1035 0.70

Test
Results: Mean Service Time

Mean service time (gap between the delivery of a parsed image) in
seconds.

» SOMA variance < OpenMP variance

Sequential OpenMP SOMA

mean T mean Ts | mean var | mean Ts | mean var
480p(4) 0.2823 0.2966 0.0014 0.2919 0.0004
720p(4) 1.3263 1.3955 0.0087 1.3884 0.0009
1080p(4) 3.2524 3.4399 0.0101 3.4369 0.0075
480p(6) - 0.3038 0.0016 0.3023 0.0006
720p(6) - 1.4241 0.0111 1.4206 0.0064
1080p(6) - 3.4906 0.0238 3.4983 0.0197
480p(12) - 0.4223 0.1421 0.4148 0.0044
720p(12) - 1.9426 0.0862 1.9228 0.1334
1080p(12) - 4.7394 0.3956 4.6915 0.6277

Test

Results - Comments

All the results of the framework are comparable with OpenMP's.

» Almost same performance.
» SOMA has a lower service time variance — more predictable.

» Low overhead as OpenMP.

The framework achieved the two main requested properties to work

with real-time applications.

» More realistic test cases will be tested.

Future Steps

Future Steps

Creation of custom pragmas and clauses.

» Too many pragmas

» No possibility to specify real-time constrains

Better scheduler heuristics.

» Save time by early pruning.

Implement a probabilistic profiling step.

» Some functions may not be called.

Add the possibility to extend the concept to heterogeneous
computing.

Introduction Framework Test Future Steps

Thank you!

» Questions?

Email:
fi.brizzi@sssup.it

	Introduction
	Framework
	Test
	Future Steps

