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a b s t r a c t 

Trajectories and parameterized curves are data types of growing importance. Many measures for such 

data have been proposed in order to provide analogues to the mean and variance of vectors. We iden- 

tify a counterintuitive oscillating behavior of dynamic time warp-based averages on certain data sets. We 

present an algorithm that combines ideas from both self-organizing maps and dynamic time warping 

that avoids these oscillations and hence promises more representative curve averages. These improve- 

ments also allow for accurate estimation of the piece-wise variance for a set of general N-dimensional 

trajectories. The run-time performance is demonstrated on movement data from rowing, where we are 

able to provide performance feedback in real-time to users in a simulator. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Parameterized curves are the natural representation for a vast

umber of data types. Spatial trajectories in particular are a cur-

ently expanding research topic, driven mainly by the rapidly in-

reasing performance and lowered cost of navigational and track-

ng equipment. 

Most contemporary statistical and machine learning methods

ssume fixed input vectors, which is an easier case to treat both

heoretically and computationally. In practice, however, curves of

arying length may arguably be just as common. Handwritten

haracters, objects in videos and GPS coordinates are just a few

xamples of discrete parametrized curves in practice. Hence, there

s a growing demand for new statistical methods that are able to

ffectively treat this data class. 

Parameterized curves are often sampled and stored as a time

eries, but since dynamic time warping is applied the time stamps

re irrelevant except the for ordering of the data points. Although

he analysis is nominally performed on time series, the data type

e are really interested in is the underlying continuous parame-

erized curve. Analysis of such parameterized curves requires de-

elopment of new statistical measures. 

The extension of measures into a new domain can be realized

n several ways. The primary objective of our extended statistical

easure is to intuitively transfer information to a human inter-

reter in describing the data. Although a certain degree of sub-
∗ Corresponding author. 
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ectivity is unavoidable, several qualitative and quantitative aspects

an be isolated and compared in detail between measures. 

For the sake of clarity we will focus our analysis on a partic-

larly common application of statistics for spatial trajectories: hu-

an movement analysis. Trajectories here refers to the particular

ase of parameterized curves in spatial coordinates parameterized

y time. Parameterized curve and trajectory will be used inter-

hangeably to describe our underlying data type as we move to-

ard our application example. 

.1. Variance estimation 

In the movement analysis applications, especially in sports, the

otion commonly consists of repeated movements generated by

uman subjects in order to achieve an objective. One of the im-

ortant problems in this application is how to estimate the perfec-

ion of movement and rate the performance. Such estimates can

e used directly as real-time feedback for learning purposes or, in

ater analysis, of the subject’s skill progression in the task. 

Sometimes an easily defined goal, such as success rate or ve-

ocity, is available. For cases where such measures are not easily

vailable, it is still possible to estimate user skill using a set of sta-

istical measures that are known to correlate with the performance

evel in several tasks. 

One of the most intuitive movement performance measures

hat can be applied to a variety of movements is the variance of

he set of paths. As a subject improves his skill level, his move-

ents will tend to become progressively more regular and even-

ually converge towards a locally optimal path with low variance

1] . 

http://dx.doi.org/10.1016/j.patrec.2016.09.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
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Further, in order to give additional information and feedback for

training purposes, we are seeking the ability to measure this vari-

ability at any specific point over the path. Such feedback promises

to enhance the value of variance as feedback, as it allows us to

isolate critical areas of the trajectory that have a higher correlation

with the performance level. 

To arrive at an effective variance estimation for these purposes

we will have to create two statistical measures: the mean trajec-

tory and the variance. 

1.2. Mean curves 

The first objective, to calculate a mean curve, is interchangeably

called shape averaging, time series averaging, sequential data aver-

aging or trajectory averaging depending on the application case.

Many other topics in trajectory statistics, such as sequence clus-

tering and curve distance measurements, involve the calculation of

distance between curves as a central theme in the algorithms. 

One approach for developing curve averages is to rely on the

median trajectory, as in [2] . This has some advantages, such as not

violating space constraints, but are less useful in that its average

might be dissimilar in its dynamics. Another related and more re-

cent proposal is the central trajectory by [3] . 

Both of these averages can produce a representative trajectory

in many cases, but do not in any way correspond to the mean in

ordinary vector-based statistics. This means that they, while being

useful in producing a representative prototype curve, are much less

suitable as a foundation for developing other statistical methods

relying on the mean, e.g. k-means and variance. We will hence not

treat these types of averages further. 

There have already been numerous attempts at designing an

effective mean trajectory. A common approach is to use dynamic

time warping averages between trajectory pairs, as described by

[4] . This approach is based on the repeated merger of individual

pairs of curves using dynamic time warping until all curves have

been processed and a single remaining, hopefully representative,

trajectory has been derived. 

Unfortunately, as shown by [5] , pairwise mergings suffer from

undesirable properties for an average. The popular hierarchical av-

eraging method lacks the associative property and can cause clus-

ter centers to drift out of the cluster. These properties are counter-

intuitive and could result in undesirable behavior in many statisti-

cal methods. 

In particular, the commonly used k-means clustering algorithm

may fail to converge. For these reason, pairwise mergers are poor

candidate measures for most applications. 

1.3. DBA 

To solve the various issues with pairwise mergers a new al-

gorithm was suggested by [6] . Their proposed algorithm, Dynamic

Time Warping (DTW) Barycenter Averaging (DBA), starts with an

initial guess of the average curve from pairwise curve mergers.

Starting from this initial guess, it alternates between two different

operations that both lower the DTW distance to the curve set: 

1. Perform DTW matchings between the average curve and each

curve of the data set. Assign each point on each curve to their

associated point on the average trajectory. 

2. Move each point on the average curve to the center of the as-

signed points. 

The dynamic time warping will converge to a local minimum of

the global inertia in parameter space. 

In further work by [7] the authors show that their DBA algo-

rithm can be successfully used to apply k-means clustering. Their

results imply that the DBA-algorithm establishes state-of-the-art
lassification performance by significantly reducing the error com-

ared to hierarchical merging-based methods and even outper-

orms nearest neighborhood methods. At the moment DBA is one

f the most promising candidates for more advanced curve statis-

ics and classification. 

.4. Contribution 

The DBA algorithm suffers from a weakness that makes it un-

uitable in certain cases: it will tend to converge to spatially os-

illating curve averages when the dataset contains parallel curves.

his is related to a larger problem where the prior does not limit

verage curve length. We will present this phenomenon in our de-

cription of the trajectory average problem and in the experimental

esults section. 

The second statistical issue treated by this paper, local estima-

ion of the variance, is a natural extension of the mean for param-

terized curves. As it is a second order momentum, it relies on

he assumption that we are already able to effectively estimate the

ean. 

In this paper we also present a novel and practical algorithm for

olving the two problems we have just mentioned. We show that

his is a generalization of the DBA algorithm and that we can find a

olution within this group of algorithms that avoids the above un-

esirable behavior in the curve averages. Furthermore, we present

n extension of the scalar definition of variance that is valid for pa-

ameterized curves. Finally, we demonstrate that we are now able

o produce practical, robust software solutions to the trajectory av-

raging and variance problems in real-time. 

. Algorithms 

.1. Trajectory variance 

In order to calculate the piece-wise variance we first need to

reate the mean curve. We base our curve on two existing algo-

ithms: Self-organizing maps and dynamic time warping. We will

ombine the advantages of both in order to produce a practical and

onverging algorithm for parameterized curves. 

.1.1. Self-organizing maps 

A self-organizing map is constructed iteratively from two steps:

1. Assign each curve point to the closest node. 

2. Move each node towards the weighted means of the points as-

signed to it and to its neighboring nodes, as specified by the

neighborhood function. 

By repeating the above process the map will converge to a tra-

ectory. Since curve points are assigned to closest nodes individ-

ally and without consideration of the order of points along the

hole curve, the map may not be able to accurately represent self-

ntersecting curves. 

.1.2. Dynamic time warping 

Dynamic time warping is often explained as a stretching and

ontraction of the time coordinate of a trajectory to minimize the

istance to another trajectory. In other words, it is the minimum

ossible Euclidean distances between two sets of points with the

estriction that we can only walk forward in each curve to find

he next matching pair of points and that each point needs to be

atched with at least one other point. 

Formally, an ( N , M )-warping path is a sequence p = (p 1 ,

p 2 , . . . p L ) with p l = (n l , m l ) ∈ [1 : N] × [1 : M] satisfying the fol-

owing the conditions: 
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(1) Boundary condition: {
p 1 = (1 , 1) 

p L = (N, M) 
(1) 

(2) Step size condition: 

p l+1 − p l ∈ (1 , 0) , (0 , 1) , (1 , 1) (2) 

for l ∈ [1 : (L − 1)] 

Calculation of this distance and the corresponding matching

oints is done in one iteration of the algorithm, which uses dy-

amic programming to arrive at the solution. Several optimization

ethods for dynamic time warping exist. Many of these are based

n removing excessive dilation of the time from the solution space,

.g. constraint to the Sakoe–Chiba [8] or Itakura Bands [9] . 

.1.3. Self-organizing trajectory 

Our algorithm combines the principles of self-organizing maps

ith the time dilation of DTW. Specifically, we achieve this by re-

lacing the first step in the SOM algorithm with the matching from

ynamic time warping. Note that, in contrast to the case of self-

rganizing maps, we must match the whole set of points in the

urve to the nodes in a batch: 

1. For each trajectory, perform DTW matching for each curve with

the nodes. 

2. Move each node towards the weighted means of the points as-

signed to it and to its neighboring nodes, as specified by the

neighborhood function. 

.1.4. Initialization 

Before starting iterations between the steps we need to ini-

ialize our nodes. To do this we take a randomly selected curve

rom our data set, like in DBA. Unlike DBA, we manually define

he number of desired nodes and then stretch the curve uniformly

y duplicating data points at even intervals so that the resulting

urve contains the desired number of nodes. The positions of the

nitial nodes does not seem to have a noticeable effect on the min-

mum obtained from our data set. This initialization method can be

een as an heuristic for shorten training time, while giving us the

reedom to specify the curve resolution. 

.1.5. Convergence 

The SOT algorithm usually converges in practice by simple

atching with the nodes and curve points, but for a strict guar-

ntee of convergence we can instead assign nodes based on the

eighborhood distance. This is done by summing the squared dis-

ance of all nodes in the neighborhood when performing the DTW

atching. min and minval is the argument and value of the mini-

um, respectively. 

 i, j = 

∑ 

i 

d i, j N(i, j) (3)

Where d i , j is the squared Euclidean distance and N(i, j) the

eighborhood function. Since the neighborhood function is usually

ero for | i − j | > k for some small integer k, this can usually be

omputed without significantly increasing the computational re-

uirements of the algorithm. 

Convergence is then guaranteed by the fact that both steps in

he algorithm maintain or lower the total sum of squared distances

cross all curves, which is clearly bounded from below. In order

o distinguish this sum from the pairwise inertia used in the DBA

lgorithm we denote this new sum being minimized by SOT the

eighborhood inertia. 

The original SOM algorithm performs matching based on dis-

ances to individual nodes. If only distances between individual

odes are used in the DTW matching, as per the original SOM
lgorithm, convergence is not guaranteed. Still, such simplified

atching might be a better choice in practice as it is faster to com-

ute. Both SOM and SOT tend to converge on real data with this

implified matching procedure, but convergence proofs are more

roblematic. This alternative matching method could be preferable

n applications where performance is essential. 

.1.6. Pseudocode 

The pseudocode of the algorithm is presented below in a form

esembling the pseudocode in [6] for easy comparison. We calcu-

ate the average sequence C by applying the SOT algorithm a num-

er of times. It in turn uses the neighborhood distance between a

et of coordinates δN and the node matching function DTW N . 

lgorithm 1 δN 

equire: N(x ) : Neighborhood function 

equire: a 

equire: B = 〈 b 1 , . . . , b T 〉 
equire: b i 

dist N ← 0 

for i ← 1 to T do 

d ist N ← d ist N + N(i − b i ) δ(a, b i ) 
return dist N 

lgorithm 2 DTW N 

equire: A = 〈 a 1 , . . . , a S 〉 
equire: B = 〈 b 1 , . . . , b T 〉 

m [1 , 1] ← (δN (a 1 , B, 1) , (0 , 0)) 

for i ← 2 to S do 

m [1 , j] ← (m [ i − 1 , 1 , 1] + δN (a i , B, 1) , (i − 1 , 1)) 

for j ← 2 to T do 

m [1 , j] ← (m [ i 1 , j − 1 , 1] + δN (a 1 , B, j) , (1 , j − 1)) 

for i ← 2 to S do 

for j ← 2 to T do 

minimum ← minV al(m [ i − 1 , j] , m [ i, j − 1] , m [ i − 1 , j − 1] 

m [ i, j] ← ( f irst(minimum ) + δN (a i , B, j ) , second (minimum )) 
return m [ S, T ] 

.1.7. Relation with DTW barycenter averaging 

A special case of the SOT algorithm is a variant where it up-

ates the node centers in batches and moves the average with a

tep size equal to the distance to the curve average. If we then use

lgorithm 3 SOT 

equire: α Step size monotonically decreasing for each iteration of

SOT 

equire: C = 

〈
C 1 , . . . , C 

′ 
T 

〉
the initial average sequence 

equire: S 1 = 〈 s 1 . 1 , . . . , s 1 ,T 〉 the 1 

C ′ ← C 

for seq in S do 

m ← DT W N (seq, C) 

i ← T 

j ← T ′ 
while i ≥ 1 andj ≥ 1 do 

C ′ 
j 
= C j + α(seq i − C ′ 

j 
) 

(i, j) ← f irst(m [ i, j]) 
return C’ 

he Kronecker delta as the neighborhood function, 

(i, j) = d i, j (4) 

his is equivalent to the DBA algorithm. 
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Fig. 1. Two different curve averages (black thick line) between two parallel lines 

(thin black lines). DTW matchings between top and bottom lines with the curve 

average are illustrated by red and blue lines. A straight curve is a better average 

candidate, but a densely oscillating curve is on average closer to the top and bot- 

tom curve. In this example the inertia produced by the bottom oscillating curve is 

0.64 of the inertia of the straight top curve. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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Note that the choice of neighborhood function affects the dis-

tance measure being minimized. In particular, an average trajec-

tory minimizing the DTW distance with a Kronecker delta neigh-

borhood will likely result in an oscillating average. The reason for

this is that a spatial oscillation between different parallel curves

will always have points close to any given curve on either paths

and in most cases, consequently, a smaller summed DTW distance

than any given path parallel to these curves. A conceptual descrip-

tion of this can be seen in Fig. 1 . 

While this might appear as an insignificant effect on small data

sets, this is not always the case. A particularly problematic aspect

of this phenomenon is that the magnitude of this oscillating effect

grows as sample sizes and precision grow, i.e. when we have curve

variance that is large in comparison to the distance between the

nodes of the curve average. 

We propose a simple solution to this through our SOT algo-

rithm: by utilizing the more general self-organizing trajectories

and apply a different neighborhood function we will increase the

prior likelihood of non-oscillating curves. 

The step size is largely an implementation detail and does not

affect the optimum nor the convergence property if we base the

node matching on the neighborhood inertia. If we instead match

based on distance to individual nodes, a smaller step size might

offer a more stable behavior as there is no strict guarantee that

the neighborhood inertia decreases. A well-balanced step size also

allows for exponentially weighted moving averages. On the other

hand, the DBA solution leads to the greatest possible reduction

in neighborhood inertia in each node movement step of the algo-

rithm. 

2.2. Variance estimation 

We seek to arrive at pointwise variance estimate along a curve

in order to estimate user performance and provide valuable feed-
ack to the user. In order to do this we will first extend the con-

ept of variance into the domain of trajectories. We would like this

easure to be intuitive and have similar properties as the variance

f vectors. We begin with a definition for continuous trajectories

n order to guarantee that our estimate converges to some value

s we increase the sampling frequency and the size of the data

et. After establishing our continuous measure we proceed with a

ethod for estimating it given a set of sampled trajectories. 

.2.1. Defining continuous trajectory variance 

We define trajectories as a set of spatial coordinates x i with cor-

esponding time coordinates t i . An intuitive concept of local trajec-

ory variance of these is not easily defined. First we have to define

 local concept for curves similar to the mean. Intuitively, this sug-

ests a curve around which the average displacement of all curves

s 0 on a certain plane locally orthogonal to the curve. 

For a more formal definition in the continuous case, we define

n orthogonal hyperplane H i ( t ) of a regular parameterized curve

 i ( t ) as the set of points described by 

 i (t) = c i (t) + v , v · ∂ 

∂t 
c (t) = 0 (5)

We define the projection proj c i , c j : R → R 

n −1 × R of a curve c i 

n the set of orthogonal hyperplanes of a another curve c j as the

ollowing set: 

roj c i , c j (t) = c i (s ) ∪ H j (t) (6)

To restrict our definition to trajectories that run in the same

irection and within the focus of the curvature we also require two

dditional conditions: that s is a monotonic function of t and that
∂ 
∂t 

c i (s ) · ∂ 
∂t 

c (t) > 0 . 

Using the notation we can define the trajectory mean m ( s ) of a

et of curves c i ( t ) as follows: 

 

i 

proj c i , m 

(t) = m (t) (7)

If such a mean is well-defined for a curve in some neighbor-

ood of t 0 , it at each point closely agrees with the corresponding

efinition of mean for vector. This definition allows us to estimate

he variance as the squared distance of our variance estimation in

he same hyperplanes. 

.2.2. Estimating trajectory mean and variance 

After establishing our piecewise linear curve average we cal-

ulate a variance estimate for each curve segment. DTW assigns

oints to nodes, which is used as a starting point for curve seg-

ent assignment. To make an assignment to curve segments, we

ssign each point to one of the mean curve segments connected

o the node. First we check if the point belongs to the orthogonal

yperplanes spanned by any of the two adjoining curve segments:

 < 

(p − n i ) · (n i +1 − n i ) 

‖ 

n i +1 − n i ‖ 

< 1 (8)

here p is the point of the trajectory, while n i and n i +1 are the

nding points of the curve segment in question. 

All trajectory means assigned to a curve segment are used to

alculate mean and variance. This is done as the regular case

round a point, except that we substract the component parallel

o the curve segment. 

 proj = p − n i − (p − n i ) ·
(n i +1 − n i ) 

‖ 

n i +1 − n i ‖ 

(9)

If the point lies in the set of orthogonal hyperplanes to both

ine segments, it is assigned to the closest line segment. 
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. Results in human motion analysis 

In this section we evaluate the performance of our algorithm in

ractice. First we demonstrate curve averaging in real-time while

etaining high quality solutions. We also illustrate the implications

f oscillation on real data, as discussed in relation to the DBA al-

orithm, and compare with the curves produced by self-organizing

rajectories. An example of our code can be found in [10] . 
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.1. Real-time application 

First we would like to evaluate the ability to perform the anal-

sis in real-time with immediate feedback to the user, opening the

oors to many other real-life applications. We test our system on

ata from users on a real rowing simulator collected by [11] . Our

lgorithm will run in the background in parallel with a physical

imulator of the boat and a stereoscopic 3D graphics environment
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Fig. 3. Mean curve (thick red line) and sample curves (thin blue lines) calculated 

in real-time. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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providing realistic input to the rower. With the simulator running

at 100 Hz, this leaves a small and highly variable fraction of the

CPU available to our algorithm. 

Rowing is a periodic movement generally divided into four

phases and with a frequency in the order of 2 seconds. We trained

a neural network to identify the start and end of each rowing cy-

cle as in [12] and add the resulting cycle trajectory into our SOT.

To deal with a periodic trajectory we create a SOT with a circular

neighborhood function, i.e. a neighborhood function where the first

and the last nodes of the map are considered to be adjacent. This

guarantees that the mean trajectory forms a periodic path. For clar-

ity and in order to avoid overfitting of hyperparameters, we have

used a simple triangular neighborhood function, with 

N(i, j) = 

⎧ ⎨ 

⎩ 

1 if i = j 

0 . 5 if | mod(i − j) | = 1 

0 in all other cases 

(10)

Since a calculation of the full average is too expensive to be

performed in a single rowing cycle, we store the last 30 curves

and weigh them by an exponential decay function e −λi where i

is an index of all 30 curves starting from the most recent one

counting backwards in time. λ is the decay rate parameter. This

approximately transforms our average trajectory estimate into the

trajectory equivalent of an exponentially weighted moving average.

Whenever free computing power is available, we then alternate be-

tween two steps: 

(1) Sampling a stored curve for updating their respective DTW

matching against the current set of nodes 

(2) Sampling a curve and moving the mean trajectory nodes to-

ward their matched curve points 

This alternation performs expectation-maximization stochastic

gradient descent on the total DTW distance function if we use

neighborhood matching. Since the input trajectories are constantly

changing and processing power limited we may not expect the al-

gorithm to be able to converge despite a decaying step size. In-

stead we chose a fixed step size that has been optimized manually

for both accuracy and adaptability to changes in the rowing style

of the rower. 

When a new curve is added, we prioritize the calculation of

its DTW distance and also calculate the distance to each line seg-

ment to provide feedback to the users. This could be accomplished

within the first 10 ms frame, providing practically latency-free

feedback of the previous rowing cycle and allowing the rower to

adapt immediately. 

In our example application written in Matlab we utilized an av-

erage of 4% of the Intel Core 2 Q6600 CPU across a 10-minute ses-

sion and were able to provide excellent feedback to users of the

simulator. Due to common artifacts in VICON motion capture, such

as reflection from the machinery, we have several outliers in the

input data. These tended to fall outside the searched volumes for

the mean calculation, resulting in a very robust mean and variance

estimation even in presence of such severe outliers. 

Even when starting from an initial trajectory severely distorted

by noise, the algorithm quickly reestablished the proper shape. The

average can be seen in Fig. 3 , where some of the more extreme

outliers are also clearly visible. We used no other filters except

those inherent in the algorithm described. 

As subjects changed rowing style within a single trial in re-

sponse to fatigue and desired velocity, the algorithm quickly

adapted and reestablished a new mean curve as well as updated

variance estimates per segment within a few strokes. 
.2. Curve comparison with DBA 

We illustrate how the SOT algorithm compares against DBA in

ractice using two examples of human movement analysis: our

wn dataset from the rowing simulator and the accelerometer

ecordings of 8 different hand signs by [13] . We use 100 nodes in

ll examples in order to illustrate effects on sampling rates simi-

ar to those required for our variance calculations. The number of

ata points of each trajectory in our data set varies between 150

nd 400 data points, except for a few outliers. To isolate the rele-

ant aspects of our comparison we performed all tests in this com-

arison offline, i.e. using the regular SOT rather than the weighted

verages used for real-time estimates described above. We also

icked a number of iterations of SOT at least twice of what seemed

o be required for convergence in early trials. 

In these experiments the DBA produces the expected oscillating

ehavior, while the SOT resulted in a much smoother mean curve.

he same respective behavior of both algorithms is reproduced on

he other data set, as seen in Figs. 4 and 5 . 

Converged mean curves on our own dataset can be seen in

ig. 6 . Being of higher resolution than the hand sign data set, we

ee a high degree of oscillation using the DBA on these data. The

esulting curve average is practically useless for defining the or-

hogonal planes and calculating variance. The effect of the neigh-

orhood function in SOT is dramatic on the structure of the curve

nd the direction of its curve segments. 

The qualitative difference seems obvious, but below we will

lso show the difference using quantitative measures in order to

etter understand how the curve averages behave on our data sets.

One way to tackle the comparison quantitatively is by inves-

igating curve lengths, here defined as the Euclidean length of

he path formed by connecting the nodes in consecutive order

ith lines. The average should preferably eliminate sensor noise,

hile preserving other qualities of the curve. Hence we expect a

ood mean to be of equal or shorter length than typical curves

n the data set. The distribution of curve lengths can be seen in

he histogram in Fig. 2 . While the SOT produces the expected

ean curve lengths, DBA sometimes produces mean curves that

re much longer than the distribution supports. SOT also produces

engths closer to the mode of the example curves in almost every

ase. 
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Fig. 4. Curves produced by the SOT algorithm projected on the y-z plane. The mean 

curves display a low level of oscillation even for a high number of nodes. 

Fig. 5. Curves produced by the DBA algorithm projected on the y-z plane. All mean 

curves display increasing oscillations which do not correspond to oscillations in the 

original data set as the number of nodes increase. 

Fig. 6. Enlarged view after convergence. Mean curve (thick red line) and sample 

curves (thin blue lines). Top: aliasing effects from the DBA algorithm. Bottom: solu- 

tion from the SOT algorithm. All parameters except the neighborhood function are 

kept constant between the images. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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Second, how does this influence the inertia of the solution? The

OT algorithm minimize the neighborhood inertia rather than the

nertia, as explained in Section 2.1.5 . It could naively be expected

hat DBA has a significant advantage in this area, as there are fewer

estrictions for its curve shape and since the oscillation patterns

llow a much greater flexibility in the fine-grained curve structure

hat lowers the inertia, as we illustrated in Fig. 1 . 

In practice, as can be seen in Fig. 7 , the DBA inertia advantage is

ounteracted by the limited number of nodes of our curve average.

iven the same number of nodes the oscillation patterns provide

ust a slight improvement in the converged inertia. In many cases

BA also seems to get stuck in local minima and/or plateaus and

e find it quite surprising that DBA results in a higher inertia than

he SOT algorithm on certain data. 

Overall, DBA does not seem to offer a notable advantage in

erms of inertia, despite the algorithm optimizing it directly. This

eans that the quality advantage of DBA over SOT is small, while

BA also suffers from longer curve lengths and inconsistent curve

erivatives due to oscillation. An advantage of DBA is that its sim-

ler node matching is computationally less expensive by a constant

actor. 
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Fig. 7. Comparison between the inertia produced by the averages from SOT and 

DBA algorithms. The trajectories are qualitatively different, but the difference in in- 

ertia is small. 
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It can be noted that the oscillation produced by the DBA is less

evident if we lower node numbers; on the other hand, this reduc-

tion will limit the maximum resolution of the curves and is for this

reason an unsuitable method for high-quality means on large data

sets. 

4. Conclusion 

Curve oscillation can be an important artifact in mean curve

generation, especially for purposes such as variance calculations.

Our algorithm replaces the inertia with a neighborhood inertia that

proves an efficient heuristic to solve oscillation problems. However,

in future work we are looking to develop an explicit prior over all

possible trajectories. 

We have shown that SOT offer solutions with significant reduc-

tions in oscillation without a large loss in inertia in exchange for a

small computational overhead. 
We have also proposed a practical way to estimate the variance

or curves and demonstrated that both measures can be calculated

fficiently enough to be used in real-time applications. 

Sound mean and variance measures are at the core of many

ore advanced statistical methods for vector-based statistics, e.g.

lustering and classification algorithms, that could be extended

nto the trajectory domain. Our hope is that these measures can

elp researchers to effectively create useful methods in these data

ets. 
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