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Abstract: Collaborative learning activities are a key part of education and are part of many 
common teaching approaches including problem-based learning, inquiry-based learning, and 
project-based learning. However, in open-ended collaborative small group work where 
learners make unique solutions to tasks that involve robotics, electronics, programming, and 
design artefacts evidence on the effectiveness of using these learning activities are hard to 
find. The paper argues that multimodal learning analytics (MMLA) can offer novel methods 
that can generate unique information about what happens when students are engaged in 
collaborative, project-based learning activities. Through the use of multimodal learning 
analytics platform, we collected various streams of data, processed and extracted multimodal 
interactions to answer the following question: which features of MMLA are good predictors 
of collaborative problem-solving in open-ended tasks in project-based learning? Manual 
entered scores of CPS were regressed using machine-learning methods. The answer to the 
question provides potential ways to automatically identify aspects of collaboration in project-
based learning.  

Introduction  
Collaborative learning activities are key part of education and are part of many common teaching approaches 
including problem-based learning, inquiry-based learning, and project-based learning. Such constructivist 
teaching approaches have the potential to help foster the 21st-century learning skills we require of young people 
across subject domains (Banks & Barlex 2014). Particularly within the context of computer science education, 
most of these activities take place as open-ended, collaborative, small group work where learners make unique 
solutions to tasks that involve robotics, physical computing, and programming code as well as designing 
artefacts. However, the evidence on the effectiveness of using such teaching methods to satisfy common 
learning outcomes is rare (Klahr & Nigam 2004; Kirschner et al. 2006). Blikstein and Worsley (2016) argue that 
one reason for this be that evaluation in this context is notoriously laborious and requires measurement methods 
that the current standardised testing strategies and psychometrics cannot provide. Learning analytics research, 
particularly multimodal learning analytics (MMLA) can offer novel methods that can generate distinctive 
information about what happens when students are engaged in collaborative project-based learning activities 
(Worsley & Blikstein 2014). In this paper, we focus on collaborative problem-solving (CPS). We present an 
empirical study through which we explored CPS in groups of university engineering students (aged 20-22 years) 
through the use of specially designed workstation and MMLA system that collected diverse multimodal 
interaction data.  

MMLA offers researchers new tools to capture different types of data from these complex learning 
activities (Ochoa et al. 2013). The ability to collect multimodal data from bodily movements, face tracking, 
affective sensors, log files from the hardware and software, user and research generated data provide 
opportunities to obtain useful features for understanding collaborative learning. Through the use of multimodal 
learning analytics platform, we collected diverse streams of data from learning activities. We processed and 
extracted multimodal interactions to answer the following question: which features of MMLA are good 
predictors of CPS in open-ended tasks in project-based learning? In particular, we performed a regression task 
over human evaluated CPS scores by means of machine learning techniques. The answer to the questions 
provides ways to automatically identify aspects of students CPS practices and provides means for different types 
of interventions to support and scaffold the students and inform teaching practices. 

Collaborative  Problem-Solving  
CPS is a term that is increasingly used to refer to the process of people working together to solve a problem with 
equivalent roles. It brings together individual problem-solving and the social collaborative process of more than 
one individual learner working together. Both the subject of problem-solving and the subject of collaborative 
learning have a substantial research history in their right. However, it is important that we make clear what we 



mean by the term CPS, because, as learning analytics developers, we rely on effective frameworks to drive the 
analysis of our data that answers the research questions we pose. Research questions that are themselves shaped 
by our theoretical understanding, which enables us to make sense of our data, to identify data sets that indicate 
the effective implementation of the educational construct under investigation and differentiate them from data 
sets that evidence a less effective implementation. The OECD Collaborative Problem Solving Framework, for 
example identifies three dimensions for understanding and assessing  problem solving: context, task and process 
(2015) . 

Context in CPS is described as the circumstances of the problem being solved. Context consists of the 
resources that are available to learners to support their collaborative learning activity (Luckin, 2010). A CPS 
task can be thought of as a set of features that represent a gap or crossroads where the way forward to solve the 
problem is to an extent unknown and must be generated and/or co-constructed by two or more participants. CPS 
might be as much about identifying a possible solution as about identifying and producing the solution. The 
process of CPS requires the combination or the inter-relation of social and cognitive processes. Ideally, 
interaction and joint problem-solving will centre on a number of parallel cognitive activities, such as 
understanding the problem situation, clarifying sub goals and reflecting on assumptions. In addition to the 
OECD approach, which was developed for assessment of individual student capacities, we can also consider 
CPS as a tuition approach (Cukurova et al. 2016) and at groups and communities’ levels (Dillenbourg, & 
Jermann, 2007). These considerations would also increase the complexity further.  

CPS is a complex concept with multiple dimensions. In the literature, many variables have been 
identified as indicators of successful CPS, or collaborative learning and warrant further investigation. These 
variables include equality and mutuality (Damon & Phelps 1989), symmetry (Dillenbourg 1999), synchrony of 
groups’ actions and gaze (Schneider & Blikstein, 2015; Schneider & Pea, 2013), individual accountability of 
participants (Johnson, & Johnson, 2003; Springer, Stanne, & Donovan, 1999), reaction time of participants to 
the actions of members of the  the group (Raca, Tormey, & Dillenbourg, 2014), and reaction of students to the 
prompts of teachers (Sharma, Jermann, & Dillenbourg, 2014). In this paper, we further explore synchrony and 
individual accountability as independent variables to identify CPS. It is important to note here that the results on 
synchrony of groups’ body actions are not conclusive. Although, overwhelming majority of existing evidence 
suggests that synchrony can predict collaboration in Educational Psychology research (cf. Lakens, & Stel, 2011; 
Wiltermuth, & Heath, 2009), this may not be the case for all data sets and interpretations of synchrony. For 
instance, although Schneider and Blikstein (2015) find that synchrony in groups’ actions may not predict 
collaborative learning, their gaze synchrony does predict it. Therefore, in our interpretation, we used a 
combination of their hand movements and head direction (where they are looking) to interpret synchrony. In 
addition to these two variables, we use the amount of physical engagement of students as this is an important 
aspect of project-based learning environments.  

Multimodal  Learning  Analytics    
To better accommodate learning in small groups, researchers typically use low-cost sensors and inexpensive 
computational power for obtaining data from diverse sensors that include computer vision, audio, biometric, and 
data from the learning objects (like physical computing components or laboratory equipment) to collect insights. 
The multimodal data from these sensors provides new opportunities for investigating learning activities in the 
real-world between small groups of learners working on tasks with physical objects (Halverson & Sheridan 
2014; Blikstein & Worsley 2016).  

There is an emerging body of work with MMLA to capture small group work on project-based learning 
that has grown out of the work of (Blikstein & Worsley 2016; Chen et al. 2014; Ochoa et al. 2013) explored 
multimodal techniques for capturing code snapshots to investigate students learning computer programming and 
video and gesture tracking for engineering tasks. Worsley and Blikstein (2014) presented different approaches 
for data integration and fusion and how these can have a significant impact on the relation of research and 
learning theories. These approaches provided the means for other researchers to begin to explore MMLA with 
small groups of students across different subjects. Ochoa et al. work (2014) used existing multimedia processing 
technologies to produce a set of features for accurate predictions of experts in groups of students solving math 
problems. Grover et al. (2016) have explored how to develop test computational models of social in CPS 
learning environments. Their approach has been to classify the quality of collaboration from body movement 
and gestures of pair programmers working together.  Drawing from the literature we can observe that MMLA 
has a role to play to support CSCL in project-based learning through looking at what types of multimodal 
interaction is relevant for understanding CPS. Additionally, opportunities exist for more investigation with 
MMLA to gain insights into CPS.   



PELARS  System  and  Context  
The work discussed in this paper is based on the European project Project-based Learning Analytics for 
Research and Support (PELARS1). One of the aims of the project is to develop learning analytics tools for 
hands- on, open-ended STEM and STEAM learning activities using physical computing. The current system 
includes customised furniture with an integrated Learning Analytics System (LAS) such as tracking hands, faces 
and other objects and the Arduino platform with a visual web-based Integrated Development Environment 
(IDE) that captures interaction information of physical computing. The learners and observers use mobile 
devices to capture multimedia data (text, images, and video) to self-document the learning activities (Ruffaldi et 
al. 2016). See the system in action in Figure 1 below. 
 

 
 

Figure 1. Different views of the PELARS system.  
 
The PELARS LAS collects captures data streams from face and hand tracking, the ARDUINO IDE that 
includes hardware and software log-files, and audio levels that more fully explained in the next sections. 

Datasets  
The data employed in this paper is based on 12 sessions of 3 students studying engineering at a European 
University (average age 20 years old with 17 and 1 woman). Each student group used the system over 3 days 
completing 3 open-ended tasks. The students were introduced to the system and then their task was to prototype 
an interactive toy. No specific instructions about the timing of the sessions were given to students. Each session 
required between 60 and 80 minutes for the students to complete the task. 

Evaluation  of  CPS  
The starting point of the automatic assessment is the expert coding of the students’ sessions based on video 
captured with the LAS. The coding scheme makes use of three levels (0, 1 and 2) to represent passive, semi-
active and active student states, one for each student of the team. The active code (2) is used whenever a 
student's hand is active on an object; the semi-active code (1) is used when a student is not physically active but 
his head is directed towards a peer, or teacher, whatever is active. Finally, the passive code (0) is used if 
student’s hands are not physically active with any object and their head is directed away from the active position 
of the peers. The combination of the three codes of each student provides a synthetic representation of 
collaboration.  

Students’ behaviours have been coded in 30-second windows. To validate the coding actions, two 
researchers applied this coding scheme to all video data. This procedure has been used as a way of testing the 
validity of the coding system generated. Where there was disagreement, the researchers discussed the data and 
revised their coding accordingly.  

  



  
  

Figure 2. students from left to right have a coding of 122 meaning that leftmost student is looking, and the other 
two are working together.  

 
The per time-window coding has been used to compute three aggregate scores for the whole session 

based on the semantics of the encoding. Physical engagement is measured by the percentage of code 2 over the 
total. Synchronisation is measured by the combined percentage of 222 and 111 codes. These are the two 
situations in which all students are active or all semi-active. The 111 code corresponds to the specific case in 
which a facilitator or teacher enters the scene and the students are looking (semi-active) at him/her. Finally, 
individual accountability has been measured by the total number of situations in which at least one student is 
looking at another student actively working: that is all the combinations of a 2 with two 1 code, and two 2 codes 
with one 1 code (e.g. 211, 221). These are the situations in which at least one student is paying attention to the 
physical actions of another student. Table 1 presents the summary of the CPS evaluation results based on this 
coding for the 12 sessions. Each score is presented as a percentage of the whole time. 
 
Table 1: Researchers’ Coding of the student sessions with the three CPS scores as percentages of the total 
session duration  
 

Session Physical Engagement Synchronicity Individual Accountability 

 No. PE Total 
SYN 111 
(teacher) SYN 222 SYN Total IA Total 

1 46,4% 30,88% 0,00% 30,88% 66,18% 
2 50,00% 0,00% 10,00% 10,00% 50,00% 

3 53,7% 1,05% 16,84% 17,89% 46,32% 

4 67,97% 7,1% 38,3% 45,45% 47,40% 
5 66,0% 0,0% 25,9% 25,95% 55,06% 
6 77,92% 0,6% 48,7% 49,35% 46,75% 
7 51,9% 3,6% 12,3% 15,94% 64,49% 

8 60,75% 0,0% 24,8% 24,80% 34,40% 
9 62,7% 0,0% 30,1% 30,15% 34,56% 

10 74,9% 3,0% 43,6% 46,53% 53,5% 
11 46,4% 1,7% 11,7% 13,33% 44,17% 
12 60,06% 0,0% 24,5% 24,53% 53,77% 

Acquired  Data  
For each of the sessions recorded, the LAS system collected data from the students comprising activity 
performed, user generated content (text and multimedia) and actions on the Arduino visual Integrated 
Development Environment (IDE). In particular, the following data has been acquired: 
 
Face Tracking - Using a frontal camera and the Viola-Jones algorithm the face of students was tracked and 
thanks to camera calibration and assumptions about sizes it was possible to estimate the 3D position from the 



camera. This means that the position of the face is computed in 3D coordinate. Two metrics have been 
identified: the first is the count of Faces Looking at the Screen (FLS), the second is the average between all the 
faces pairs providing an indicator called Distance between Learners (DBL). The measure DBL could be seen as 
a marker of collaboration obtained when DBL is a small value.  
 
Hand Tracking - A top down camera, instead, monitored the motion of the hands of the students that were 
wearing fiducial markers that disambiguate each primary hand. Again, thanks to the calibration of the camera 
and the size of the markers the 3D pose of the hands was obtained. The resulting metrics were the Distance 
between Hands (DBH) and the Hand Motion Speed (HMS), respectively as the average distance between all the 
hands, and as the average motion speed. 
 
Other Data collected but not analysed in this paper - The interface between the Arduino visual IDE and the 
data collection system provided information about the types of physical and software blocks used in the project 
and their connections. Audio Level - By means of the microphone included in one of the cameras and Fast 
Fourier Transformation (FFT) we compute the sound level during the session. The resulting feature is a value 
sampled at 2Hz called Audio Level (AUD). 

Methods  
This section presents how we approached investigating which multimodal features are good predictors for CPS 
for the PELARS LAS. Data pre-processing and data analysis methods are explored based on the coding scheme 
results. The hypotheses rest on creating a set of regressors (independent variables) of the CPS scores and testing 
how the different observed features affect the quality of the regressors. This approach provided information on 
sensors and measures that can be as strong predictors for collaboration in the group. 

Preprocessing  
Data has been collected at variable data rates (around 2 Hz) but without relative time offset of few 

seconds, and for this reason the pre-processing aggregates indicators from the different variables in large 
windows of same durations. The aggregation performed was based on counting for most of the variables, except 
for the distance/proximity functions for which we employed averaging, maximum and minimum. For taking 
into account the different durations of the sessions (average 63min, min 40, max 79min, std 15min). we 
employed zero padding for sessions that were too short. Additionally, the individual sessions where then broken 
down into three phases, planning, work, and reflection to help analyse the workflow of the student groups. Work 
phase lasted 42min in average, min 14, max 65, std 15. The overall recording time of 12.5 hours. 

Additionally, these phases were coded by research observers during the sessions using the mobile 
component of the LAS (see Spikol et al., 2016). The data acquired by the PELARS LAS was exported from the 
server and then processed in Python using the sklearn toolkit2 that provided state of the art machine learning 
techniques integrated with a common interface.  

Fiducial markers were relatively reliable in positioning but they were subject to visual blockage. We 
considered the amount of time between marker presence greater than 2 seconds. This resulted visual occlusion 
in 65% of time in average during work phase (min 21%, max 94%, std 20%) in particular we are interested in 
the presence of all the three hands at once (every 20s in average, min 5s, max 33s, std 8s). Face tracking faces 
similar difficulties with an average of 55% of time in average during work phase (min 0%, max 97%, std 30%). 

Machine  Learning  
This initial approach was based on regression task that used as inputs the features and as output the 

coding based scores (PE, SYN, IA) with the purpose of identifying which are the input features that can support 
the CPS framework. Among the different families of regressors we opted for Linear Regression (LR), Bayesian 
Ridge Regression (BRR) and Support Vector Machine Regression (SVR). A Ridge regression introduces 
parameters for keeping the size of the weights small, while BRR performs a regression based on the Bayesian 
framework so that it is possible to better handle ill posed problems. Then we statistically modelled the effect 
features over the outcomes using a General Linear Model provided by the Python state-model package: we use 
the GLM because we have a large number of variables with possible non-trivial interactions. Indeed, some of 
the employed regressors were not linear. 

Data obtained from the sensors have been standardized to improve the learning rate. When considering 
a global window only 8 features were available, then 24 for 1800s, 32 for 1200s and 64 for 600s. We have 
manually explored the feature selection process by backward processing. 



We used cross-validation (k=4) for evaluation of the regression because due to the number of samples 
(12) the use of a leave-one-out scheme would bring to perfect regression. This means that 7 subjects were used 
for the training and 5 for testing. We compared the quality of the different regressors by using the R2 chi square 
metric, accepting regressions only in the range 0.1. 

We also explored the effect of different parameters such as window size and the inclusion of different 
phases. Tested window sizes were 10,20 and 30 minutes (600,1200 and 1800 seconds), in addition to the case of 
one single window for the whole session. Such large window sizes allow to keep small the number of inputs to 
the regressor in comparison to the sample size. Fine-grained temporal analysis is discussed in the Next Steps 
section. 

Results  
Phase information is useful for differentiating the different moments of the sessions, and as from the visual 
inspection, there are large differences in behaviour between different phases. In particular, the regressors scored 
badly when considering the Reflect phase, while the Planning phase can be aggregated with the Work phase 
without major disruptions. Relying less on phases was a good strategy because it avoided the need for an 
automatic segmentation tool. Table 2 shows the conditions for which there is a reliable regression for the given 
data (R2 > 0.1), this means that PE Total never provided reliable regression, and only the listed windows were 
successful (e.g. no regression when using the whole window). 
 
Table 2: Results of the Regression Analysis – Scores of R2 for features Hand Distance, Speed and Face Count. 
Only the reliable regressions are reported. 
 

 Window (s) SYN222 IA211 
Linear  1200 0.28 0.17 
Bayes Ridge 1200 0.28 - 
SVMR 1200 - - 
Linear  1800 0.48 - 
Bayes Ridge 1800 - - 
SVMR 1800 - - 

 
The regression tests gave unsatisfactory results, so we proceeded with statistical modelling using Generalized 
Linear Models. And we obtained the following results for window of 1800 seconds: 
 

•   IA 222 has Hand Distance (Max and Min) as regresssor (with significance p < 0.05) 
•   SYN Total has Hand Distance (Min) as regressor (with significance p < 0.05) 
•   SYN 111 has Face Count and Hand Distance (Min and Max) as regressor (with significance p < 0.05)  

 
If instead we look at the overall window duration, we obtain: 

•   PE level can be regressed by Hand Max Distance (significance p < 0.005) 

Discussion  
In this paper, we investigated what multimodal learning analytics features could be identified and used to 
support CSCL through the use of the PELARA LAS. Our primary aim was to identify the MMLA features that 
can be used to determine aspects of collaboration in project-based learning. The purpose of this work is to 
develop CSCL that can aid in the assessment of CPS and to determine how different MMLA interactions can be 
automated to support and understanding collaborative learning. As discussed by Blikstein and Worsley (2016) 
existing evidence about the effectiveness of constructivist learning activities including project-based learning is 
rare. These teaching and learning approaches are notoriously hard to be evaluated via standardised 
measurements due to open-ended and dynamic nature of their implementations. However, MMLA provides new 
methods and methodologies with relevant potentials to provide evidence about the impact of such teaching 
approaches. In this research study, we presented that where the students are looking, the distance between them, 
the motion of their hands our key features for a learning analytics system to be effectively used to identify 
collaboration in small groups of Engineering students. These results are significant for the CSCL community as 
a starting point to investigate further what features of MMLA can be used to support collaborative learning 
providing insights about the physical and embodied processes involved in hands-on learning and how. 
 Amount of occluded hand pose due to the orientation of the fiducial markers will require to approach 
the hand tracking in a different way with the aim of extracting hand pose directly from video without the use of 



such fiducial markers. The distance in the video space will be sufficient. This operation can be applied on these 
same sessions for which we have collected the original video stream. 
 Starting from the results of this work we are moving toward the reduction of the window size down to 
the fine-grained coding of the sessions at 30-seconds intervals. This coding will allow to train a machine 
learning classifier to recognize, from the video recording and the other multimodal data, the 3-number coding. 
For this purpose, we employed a deep neural networks (DNN) that are composed of a long sequence of linear 
matrix multiplications followed by non-linear activation functions. This supervised learning approach will be 
important for automating the scoring of students session and providing assessment in the context of the CPS 
framework.  

Conclusion  
The PELARS project is limited to the context of the study engineering students performing an open-ended task 
about physical computing and the relatively small sample size currently make it hard to generalise. However, 
the finding show similar results to other findings in MMLA (Blikstein & Worsely 2016; Ochoa et al., 2013; 
Grover et al., 2016) that begin to show that physical aspect of collaborative is an important part of this type of 
learning and that learning analytics systems can identify features that are relevant for helping researchers, 
teachers, and learners unpack what is happening. 

Several questions are raised about the PELARS LAS exploratory approach on the physicality of the 
learners, the log files of the hardware and software, and the user generated data without a deeper connection to 
the students’ conversation or an inquiry-like system to support the learning. However, the project and this paper 
have focused on the investigating other processes around face-to-face collaboration, which have can now be 
collected as demonstrated. Additionally, in classroom and lab contexts collection audio from learners provide 
new challenges for accurate audio processing (ASR) and the act of making things needs to be balanced with 
more traditional textual input.  The next steps for the project are to explore how to integrate more user generated 
content from learning activities like virtual internships (Arastoopour & Shaffer, 2015) and how directional audio 
and automatic speech recognition could be utilised. 

Endnotes  
(1)   http://pelars.eu/ 
(2)   http://scikit-learn.org/stable/ 
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