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Abstract— A great part of today’s industries tends to invest
on automatic machines that can replace or collaborate with
humans in typical repetitive tasks. Despite their high motion
and positioning precision, most of these industrial robots
operate blindly, causing the working system to be poorly robust
to even slight changes of the working conditions. A solution
to such an issue might be to make the robots capable of
readjusting their actions according to a perceptual feedback, in
particular made of visual data. In this work we propose a multi-
camera framework for the visual servoing of a collaborative
robot that has to manipulate untextured industrial pieces. The
robot is supposed to recognize the object of interest and reach
it with its end-effector. We adopt a multi-camera approach
that overcomes typical issues related to single-camera schemes.
The system contains an object recognition module that extends
an already existing algorithm for 2D detection on images to
approximate 3D localization in space. A final probabilistic
recursive estimation process combines the measures provided
by the different sensors in order to improve the target pose
computation, considering all the possible uncertainty and dis-
turbance sources that may interfer, thus making the system
more robust and efficient.

I. INTRODUCTION AND RELATED WORK

Human operators working in industries and manifacturing
sectors daily perform repetitive tasks that sometimes can
compromise their physical health or even cause a psycho-
logical state of alienation. However, automation is gaining
ground in modern industries and robotic machines are able
to replace or assist humans in typical tedious and tiring tasks,
such as continuous picking, placing and assembling opera-
tions. Despite their high motion and positioning precision,
these machines mostly act blindly, i.e they are supposed
to move in a perfectly known workspace, with a perfectly
known location and configuration of the objects they interact
with. This means that a minimal disturbance in the predeter-
mined working conditions may drastically worsen the system
performance. Such situations can be avoided by providing
perceptual capabilities to a robot that can actively interact
with the surrounding environment and readjust its actions
according to a visual feedback. The use of visual sensors is
encouraged by the large amount of low-cost cameras, such
as RGB and RGB-D cameras, that today exist in the market.
On the other hand, visual servoing, i.e control of a robot’s
motion through visual information, is a widely addressed
issue present in the literature.
The first attempts to control a robot’s motion through visual
feedback date back to the 80’s - 90’s [1], [2], [3]. However,
the field gradually branched into two main approaches. In
the image-based approach the robot control law explicitly
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depends on the image features, i.e particular keypoints that
can be individuated on the image. In the position-based
approach the features are used in conjunction with the
geometric model of a target object to be reached in order
to estimate its pose with respect to the camera. Although
image-based schemes don’t need image interpretation, reduce
the computational delay and eliminate errors due to camera
calibration [4], they require a non-linear and highly coupled
control design and typical instability issues may occur [5].
A position-based approach, on the contrary, makes the target
pose computation independent from the robot motion control.
Nevertheless, the pose computation process may sometimes
be non-trivial. Object pose can be computed if the vision
system observes multiple point features on a known object.
Numerous methods for its solution have been proposed and
they can be mainly divided into analytic solutions, [6], [7],
[8] and least-squares solutions [9], [10], [11]. Furthermore,
two different types of camera configurations are generally
adopted. In the eye-to-hand configuration the camera is fixed
in the workspace, whereas in the eye-in-hand configuration
the camera is attached to the robot’s end-effector. An ex-
tensive explanation of the different schemes and approaches
can be found in [12] and [13]. There are several works that
employ a single fixed or moving camera [14], [15], [16].
However, in single camera based approaches the quality of
the captured images is highly influenced by the location
of the camera, as in the vicinity of the object the images
are more accurate, but the camera field of view is limited,
while at higher distances the field of view improves, but
measurement errors may increase. Mixed eye-in-hand/eye-
to-hand configurations have been studied in recent works.
Kermorgant et al. [17] propose a low-level sensor fusion
scheme for the positioning of a multi-sensor robot. Wang et
al. [18] employ an eye-in-hand camera to track the position
of a target object and a stereo camera to obtain the depth
information of the object. Luo et al. [19] describe a hybrid
eye-in-hand, eye-to-hand framework for object tracking and
fetching. Marshall et al. [20] propose a Kalman Filter visual
servoing control law. However, in each of these works the
multi-sensor and control scheme is modelled by means of the
classical Jacobian matrix and the typical before mentioned
instability issues may occur. In other works, such as that of
Lippiello et al. [21] the visual information of a hybrid camera
configuration is assembled to compute the pose of a target
object and control a robotic arm using image features in an
Extended Kalman Filter. Nevertheless, the pose computation
is constrained on the identification of discriminative features
that must always be retrieved unambiguously on the image



and therefore strongly depend on the image quality and the
object texture.
We propose a hybrid multi-camera framework conceived
for a position-based visual servoing of a collaborative
robot that has to manipulate untextured industrial pieces.
The multi-camera approach overcomes the issues related to
single-camera schemes, such as object occlusions and view-
dependent errors. The position-based approach expects the
computation of a target pose, but the textureless nature of
the industrial pieces prevents from employing the previously
mentioned point-based methods. Hence we make use of an
object recognition module that extends an already existing
algorithm for 2D detection on images to approximate 3D
localization in space through the use of strong graphical
tools. We eventually make the system more robust and effi-
cient by embedding a probabilistic model that considers the
possible uncertainty and disturbance sources, implementing
a recursive estimation process that combines the measures
provided by the different sensors in order to provide a more
accurate target pose and improve the chances of success of
the robot’s task.
The remaining of the paper is structured as follows: in section
II we explain our approach, illustrating the system model
and explaining the different components, section IV shows
the experimental results and in section V we discuss the
conclusions.

II. PROPOSED APPROACH

Our system consists of several stages described in the
following. Firstly each image delivered by the different
cameras is opportunely processed in order to detect the object
of interest and provide a pose measure with respect to the rel-
ative camera frame. The pose measures are then exploited in
a recursive filtering process that aims at computing different
pose estimates. The pose estimates are eventually combined
in order to obtain a single overall pose estimate and provide
a reference end pose to the robot’s end-effector. Figure (3)
shows an overview of the different components and stages of
our framework. The following sections explain the different
parts in more detail.

A. WORKSPACE MODEL

Figure (1) shows the different components and reference
frames that have to be taken into account in our system. If
n is the total number of cameras, for simplicity we consider
only one eye-in-hand camera attached to the robot’s end-
effector that approches the object, and n − 1 fixed, eye-to-
hand cameras.

Let’s consider {S0} as the base reference frame and
{Sj}, j = 1, · · · , n the frame attached to the j-th camera.
Let’s suppose that we know the transformation matrix 0M j

from each frame {Sj} to frame {S0}, where

0M j =

[
0Rj

0tj
01×3 1

]
(1)

0Rj is the rotation matrix and 0tj the translation vector.
In fact, 0M1 can be computed from the arm’s forward

Fig. 1. General scenario with n cameras, one attached to the robot’s end-
effector and the rest fixed in the workspace. A reference frame {Sj}, j =
1, · · · , n is attached to each camera, frame {So} is attached to the object
and a base reference frame {S0} is defined.

kinematics, while each 0M j , j = 1, · · · , n can be computed
after an extrinsic calibration of each camera with respect to
the base frame. We collect the pose measures with respect
to the different camera frames and then estimate the object’s
pose with respect to the base reference frame.

B. OBJECT DETECTION

Our detection system relies on a template-matching al-
gorithm conceived by Hinterstoisser et al. [22], based on
colour gradients, that fits very well with industrial objects
without texture. Hovever, as most of the template-matching
algorithms, it is based on the comparison of the image
scene with previously stored models and hence it is not
invariant to rigid transformations. This means that an object
is detected in an image only if it corresponds to a specific
template deriving from a particular 2D projection (depending
on the object’s 3D pose with respect to the camera). Since
we are interested in not only detecting the object in the
scene, but also compute its 3D pose in space, we adopt
a graphics method that allows to extend the 2D detection
process to 3D approximate localization. In particular, in a
preliminary training stage where the system learns the objects
that need to be recognized, we consider the CAD model
of the object of interest and in a computationally strong
graphics environment [23] we virtually project it in a series
of reference poses with respect to a virtual camera. The
virtual projection allows us to produce a series of synthetic
images in which the colour gradient features are computed
in order to create the templates. In this way each template
is stored with the corresponding reference pose and during
the real-time detection stage the algorithm is able to return
a bounding box on the region of the image where the
object has been detected and an approximate measure of the
object’s pose with respect to the relative camera in the 3D
space. The pose measure is only approximated and coarse,
since not all the possible poses can be recorded, but only
a discrete number of points in the viewing sphere can be
considered. Hence, each real-pose is always matched with the
nearest template-pose present in the stored database. Figure



(2) illustrates how the detection stage works.

Fig. 2. The real-time object detection module accesses a database of
stored templates and relative 3D poses, providing a 2D bounding box and a
coarse pose measure. Templates are created during an off-line training stage
through the object’s CAD model and graphics software.

C. POSE ESTIMATION

Once the object has been detected on each of the images
and a measure of the object’s pose with respect to each
camera has been provided, we need to combine the different
measures and compute an overall result in order to allow
the robot to reach the correct end-point with a specific end-
effector configuration. However, as mentioned before, those
provided in the detection stage are coarse measures of the
real poses with respect to each camera, the measurement
noise associated to the cameras can affect the detection
process and the robot’s end-effector position might not be
known exactly. For this reason we decided to introduce
a probabilistic model that takes into account the possible
uncertainty and disturbance interferences, such as the sen-
sors measurement noise, the detection confidence level, the
imperfect knowledge of the robot’s end-effector position,
etc, conferring more robustness to the system. Furthermore,
we assume that the object’s image quality increases by
approaching the object. Indeed, if we consider a pin-hole
camera model, we realize that the pixel coordinates of a
world point projected onto the image plane depend on the
distance from the camera frame [24]. As a matter of fact,
the object resolution increases in the vicinity and the pose
computation improves consequently. We thus implement two
parallel estimators: in the first one we employ the measures
extracted from the eye-in-hand camera in conjunction with
the arm motion dynamics in order to compute a pose estimate
with respect to the local attached reference frame {S1}.
Indeed, the robot forward kinematics is reflected on the
motion of the end-effector, that moves integrally with the
camera; in the second estimator we collect the measures
coming from the different fixed cameras, each mapped to the
base frame {S0}, and provide a pose estimate with respect to
that frame. Equations (2) and (3) formalize our mathematical
model. {

1xk = f1
(
1xk−1,uk,

1µk
)

1zk = h1

(
1xk,

1νk
) (2)

{
0xk = f2

(
0xk−1,

0µk
)

0zk = h2

(
0xk,

0νk
) (3)

The state vector ixk and measurement vector izk consist
of the position and orientation components with respect to
{Si}, i = 0, 1:

ixk =
[
ipTk

iqTk
]T

izk =
[
izp

T
k

izq
T
k

]T (4)

We adopt the unit quaternion representation for the orien-
tation component in order to avoid singularity issues [25].
uk in (2) denotes the eye-in-hand camera displacement due
to the arm motion, referred to as an input. No input is
present in (3) since the relative reference systems are all
fixed. jµk and jνk respectively denote the process and
measurement noise variables. In (2) the process noise is due
to uncertainty associated to the arm’s motion, whereas in
(3) it is caused by initialization errors. On the other hand,
the measures are corrupted by image digital noise and are
affected by a discretization error following from the sampling
of the viewing sphere performed in the training stage. We
assume for simplicity and formal coherence that both process
and measurement noise can be modelled as zero-mean,
uncorrelated white Gaussian variables. Furthermore, 0zk is
an extended measurement vector where all the contributions
are stacked up as shown in equation (5):

0zk =
[
0M2

2zp,k · · · 0Mn
nzp,k

]
=
[
0z

(2)T
p,k · · · 0z(n)Tp,k

]T
k

(5)

From now on, we will refer to the two parallel estimates
at time step k as:

1x̂k = Pose estimate with respect to {S1}
0x̂k = Pose estimate with respect to {S0}

(6)

Equations (2) and (3) can be, in fact, split into the
position and orientation state and measurement models as
a consequence of their decoupling (equations (7) and (8)).



1pk = 1,kRc,k−1
1pk−1 +

1,ktc,k−1 +
1µpk

1qk = 1µqk ⊗
1qk−1 ⊗ 1,kqc,k−1

1zpk = 1pk +
1νpk

1zqk = 1νqk ⊗
1yqk

(7)



0pk = 0pk−1 +
0µpk

0qk = 0µqk ⊗
0qk−1

0zpk = 0pk +
0νpk

0zqk = 0νqk ⊗
0qk

(8)



Fig. 3. Framework overview. The images provided by the cameras are given to the detection algorithm that matches a template and provides a rough
object pose measure. The pose measures provided by the fixed cameras and those provided by the mobile camera together with the arm’s motion dynamics
are respectively used to compute an object pose estimate with respect to the fixed frame and an object pose estimate with respect to the mobile frame.
The two estimates are eventually combined in order to provide an overall pose estimate to the robot.

Figure (3) shows an overview of the overall framework.
The eye-in-hand camera displacement can be retrieved at
each time step from the forward kinematics of the robot’s
arm. We indicate with 1,ktc,k−1 the translation occurred from
the previous camera configuration {S1,k−1} to the current
one {S1,k}, and with 1,kRc,k−1 the rotation with corre-
sponding unit quaternion 1,kqc,k−1. The symbol ⊗ denotes
the quaternion product. We indicate with iQp,

iQq ∈ <3×3

the position and quaternion process covariance matrices
respectively, with iRp,

iRq ∈ <3×3 the measurement noise
covariance matrices and with iPp,

iPq ∈ <3×3 the estimate
error covariance matrices relative to position and orientation.
As discussed before, we assume that the measurement noise
variance increases with the distance of the camera from the
object of interest and decreases when the camera gets closer
to it, i.e:

iRp,qk = f(iZk) (9)

Furthermore, being iqk a unit quaternion, having the norm
constraint ||iqk|| = 1, the uncertainty associated to the
quaternion is characterized by three degrees of freedom.
Indeed, iqk can alternatively be expressed as

iqk =
[
cos
(
θk
2

)
iŵk sin

(
θk
2

)]
(10)

where

θk
iŵk = iv̄k = v0îk + v1ĵk + v2k̂k (11)

is the so-called axis-angle representation and the
uncertainty can be associated to v0, v1 and v2. iµq,k and
iµq,k in (7) and (8) are thus the quaternions obtained from
iµv,k ∈ <3×1 and iνv,k ∈ <3×1 according to (10) and
(11). It is clear from equations (7) and (8) that the position
dynamics is linear, whereas the quaternion dynamics is

not. As a result, the position estimation can be carried
out through a classical linear Kalman filter [26], while we
employ an Unscented Kalman Filter [27] to capture the
strong non-linearities involved during orientation estimation,
adapting the equations of interest to the quaternion
representation [28].

Position Estimation:

For the position estimation the classical Kalman equations
are employed.

Prediction:

{
1p̂−k = 1,kRc,k−1

1p̂k−1 +
1,ktc,k−1

1P̂
−
p,k = 1,kRc,k−1

1P̂ p,k−1
1,kRc

T
,k−1 +

1Qp,k
(12)

{
0p̂−k = 0p̂k−1

0P̂
−
p,k = 0P̂ p,k−1 +

0Qp,k
(13)

Update:

iKpk = iP̂
−
p,k

iCT
k

(
iRp,k +

iCk
iP̂

−
p,k

iCT
k

)−1

(14)

where for i = 0

iRp,k = diag
(
0R

(2)
p,k, · · ·

0R
(n)
p,k

)
iCk = I(n−1)×3



{
ip̂k = ip̂−k + iKpk

(
izp,k −Ck

ip̂−k
)

iP̂ p,k =
(
I3×3 − iKpk

iCk

)
iP̂

−
p,k

(15)

Orientation Estimation:

Prediction:

At first, we sample the quaternion state distribution
function around the mean, i.e the state component iq̂k−1

estimated in the previous time step, and collect the samples
in a vector of sigma points. For this aim, we build a vector
of perturbation quaternions deriving from the Cholesky
factorization of covariance matrix iPq . Since iPq has
3× 3 dimensions, we obtain firstly a sigma vector made of
three-dimensional components iXPv ∈ <3(2N)×1:

iXPv =
√
2N
[
· · ·+

(√
iP q

)
l
· · · −

(√
iP q

)
m
· · ·
]

(16)

where N = 3, l = 1, · · ·N and m = N + 1, · · · , 2N
and then transform the three-dimensional components into
the corresponding quaternions according to (10) and (11)
to obtain iXPq ∈ <4(2N)×1. By perturbing iq̂k−1 through
the quaternion components of iXPq we obtain the following
vector of sigma points:

iXq =
[
iq̂k · · · iXPq j

⊗ iq̂k · · ·
]
∈ <4(2N+1)×1

(17)

The sampling of the measurement and process noise prob-
ability distribution is carried out in the same way around
the zero-mean to obtain iXµq ∈ <4(2N+1)×1 and iXνq ∈
<4(2N+1)×1. At this point, we project the sigma points ahead
in time by application of the process model iF :

iX̂q
−
k = iF

(
iXqk−1,

iXµk
)

(18)

and we compute the mean quaternion iq̂−k , as the state
prediction, through the intrinsic gradient descent algorithm
described in [29].
Next, we derive the estimate error covariance matrix predic-
tion by considering the errors between the quaternion pre-
diction and the quaternion components of prediction iX̂q

−
k

obtained from the propagation equation (18):

ieqi =
iX̂q

−
j,k ⊗ (iq̂−k )

−1 (19)

The error quaternions are transformed into the corresponding
axis-angle error vectors ievi and the estimate error covari-
ance matrix can be derived as:

iP̂
−
q,k =

1

2N

2N∑
i=1

ievi
iev

T
i (20)

Then we apply the measurement model iH to obtain the
output prediction:

iYq−k = iH
[
iX̂q

−
k ,

iXνk
]

(21)

Notice that

0Yq
− =

[(
0Yq

(2)−
)T

· · ·
(
0Yq

(n)−
)T ]T

(22)

as in the second filter the measurement vector is augmented.
The mean output quaternion prediction iyq

−
k is computed

analogously to iq̂−k by means of the iterative method, where

0yq
− =

[(
0yq

(2)−)T · · ·
(
0yq

(n)−)T ]T (23)

the output covariance matrix iP̂yq

−
prediction is derived

from the error quaternions:

ieyq i
= iYq−j,k ⊗ (iyq

−
k )

−1

These are transformed into the error vectors ievy i and used
to compute the matrix prediction:

iP̂yq =
1

2N

2N∑
i=1

ievy i
ievy

T
i

(24)

At last, we derive the cross-covariance matrix:

iP̂q,yq =
1

2N

2N∑
i=1

ievi
ievy

T
i

(25)

Update:

First we compute the Kalman gain:

iKqk = iP̂q,yq

iP̂yq

−1
(26)

where for i = 0:

0P̂q,yq =
[
0P̂q,yq

(2) · · · 0P̂q,yq

(n)
]

0P̂yq =
[
diag

(
0P̂yq

(2)
, · · · , 0P̂yq

(n)
)]−1 (27)

The residual is obtained from the quaternion difference. In
the first filter it is computed as follows:

1qrk = 1q̂−k ⊗ (1yq
−
k )

−1 (28)

and then transformed to 1vrk ∈ <3×1. In the second one,
the residual term is augmented:



0qrk =
[
0q̂−

k ⊗
(
0yq

(2)−
k

)−1

· · · 0q̂−
k ⊗

(
0yq

(n)−
k

)−1]
0vrk ∈ <3(n−1)×1

(29)

The correction term is obtained by multiplication with the
Kalman gain:

ivck = iKqk
ivrk (30)

and the correction vector is afterwards transformed into the
corresponding quaternion iqck ∈ <4×1.
Finally, the following state and covariance matrix updates
can be performed:{

iq̂k = iq̂−k ⊗ iqc
−1
k

iP̂ q,k = iP̂
−
q,k − iKqk

iP̂yq
iKq

T
k

(31)

Fusion and Reference End Pose Computation:

As a last step, the two parallel estimates are combined to
obtain a unique estimate of the object’s pose with respect
to the base reference frame {S0}. Consider the following
expressions:(

0x̂Ik,
0P̂Ik

)
=
(
[0p̂T

k
0q̂T

k ]
T , d(0P̂pk,

0P̂qk)
)

(32)(
0x̂IIk,

0P̂IIk

)
= 0Υ1,k

(
[1p̂k

T 1q̂k
T ]T , d(1P̂pk,

1P̂qk)
)
(33)

where 0x̂Ik and 0x̂IIk respectively denote the state estimate
with respect to {S0} and the one with respect to {S1}
mapped into {S0}, d(·) denotes diag(·) and 0Υ1,k denotes
the mapping function of the couple

(
1x̂k,

1P̂ k

)
from {S1}

to {S0} .
We indicate with

(
0X̂ k,

0P̂k

)
the overall estimate at time

step k with respect to {S0}. First, we replace in 0x̂I,IIk
0q̂I,IIk with the vector 0v̂I,IIk. Then we compute the over-
all estimate error covariance matrix and obtain the overall
state estimate by the following weighted sum:

0P̂k =
(
0P̂I

−1

k + 0P̂II
−1

k

)−1

0X̂ k = 0P̂k

(
0P̂I

−1

k
0x̂Ik +

0P̂II
−1

k
0x̂IIk

) (34)

The quaternion estimate is derived from the last three com-
ponents of 0X̂ k. At this point we have the object’s pose
estimate with respect to the base reference frame and can
provide it to the robot’s end-effector, as shown in figure (3).

III. EXPERIMENTAL RESULTS

The effectiveness of our framework was first tested on
simulated data. We then practically applied our algorithm to
the visual servoing of a Baxter Robot of Rethink Robotics
[30] with the aim of picking an industrial part positioned
on a table (Figure 4). For the purpose we used one of its
two arms with the attached eye-in-hand camera, the second

eye-in-hand camera fixed in the workspace, and an external
camera positioned on the robot’s torso. We preliminarily
chose the reference covariance values of the measurement
noise associated to each camera by collecting several pose
measures of an object at a distance of 1.0 m, on the basis
of a ground truth given by an optical marker. In the same
way we determined the process noise covariance associated
to the arm’s motion by collecting several measures of the
end effector’s pose with the arm left still. The process noise
considered in the filtering process with respect to the base
frame was set to an arbitrary small value. Table I illustrates
the obtained values, where σx,y,z is expressed in meters
and σv0,v1,v2 in radiants. The image streamings and the
reference systems monitoring were managed together by
means of the ROS operating system [31]. The estimation
rate is dictated by the rate of the cameras, which is 30
Hz. Figure (5) shows the image scenes observed by the
cameras. The industrial piece to be detected is positioned
on the table next to other objects. The yellow bounding
box puts the region where the object of interest has been
detected in evidence. Figures (6) and (7) show the position
and quaternion components of the object’s pose estimate
obtained with the simulated data. In each subplot we can see
the two parallel estimates of the single component and the
final overall estimate resulting from their combination. The
combination of the two estimates produces a final estimate
with a lower variance and a low error. Table II shows the
results obtained on the real system. The table shows the
standard deviation of the two parallel estimates, the standard
deviation of the final estimate and the mean final estimate
error. The percentage of picking successes goes around 90%.

Fig. 4. Baxter in front of the table where the industrial pieces have to be
picked.

IV. CONCLUSIONS

We presented a multi-camera framework conceived for
a position-based visual servoing of a collaborative robot
that has to manipulate untextured industrial pieces. The



Fig. 5. Camera images and detected object. From left to right: Image from
the eye-in-hand moving camera attached to the robot’s end-effector, image
from the eye-in-hand fixed camera and image from the external camera on
tje robot’s torso.
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Fig. 6. Position estimation resulting x, y and z components. The magenta
dashed line is the ground truth, the blue line is the specific component of
0x̂I , the black line is the component of 0x̂II and the red dashed line is
the component of final estimate 0X̂ .
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Fig. 7. Quaternion estimation resulting q0, q1, q2 and q3 components.
The magenta dashed line is the ground truth, the blue line is the specific
component of 0x̂I , the black line is the component of 0x̂II and the red
dashed line is the component of final estimate 0X̂ .

TABLE I
COVARIANCE VALUES OBTAINED EXPERIMENTALLY

σx σy σz σv0 σv1 σv2
0Q 10−3 10−3 10−3 10−3 10−3 10−3

2R 0.01 0.01 0.01 0.01 0.01 0.01
3R 0.01 0.01 0.01 0.01 0.01 0.01
1Q 10−3 10−3 10−3 10−3 10−3 10−3

1R 0.01 0.01 0.01 0.01 0.01 0.01

TABLE II
ESTIMATES STANDARD DEVIATION AND FINAL ESTIMATE ERROR

x y z v0 v1 v2
stdI 0.008 0.008 0.01 0.004 0.006 0.004
stdII 0.01 0.009 0.01 0.004 0.005 0.004

stdfinal 0.007 0.007 0.008 0.002 0.004 0.003
mean error 0.006 0.006 0.007 0.006 0.005 0.006

framework includes an object detection and approximate
localization stage, followed by a stochastic recursive pose
estimation process that guides the robot motion control. The
system was first tested through simulative experiments and
then on a Baxter Robot. Experimental results show low pose
estimate errors and high picking success, underlining the
effectiveness of our approach. It should be noticed that the
framework choices are not platform dependent and can be
generalized to any kind of robot, regardless of its kinematics,
and any number of eye-to-hand and eye-in-hand cameras.
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