
An affordances based approach to assisted teleoperation

Alessandro Graziano1, Emanuele Ruffaldi1, Carlo Alberto Avizzano1

Abstract— The introduction of teleoperated robots in scenar-
ios in which human manipulation dexterity does not have to
be limited by the teleoperation system is one of the greatest
challenges in the field of telecontrol. In this paper we propose an
approach for capturing and transferring human manupulative
skills to a robotic manipulator that is able to supervise the
teleoperation process by means of a proactive support that
introduces elastic motion constraints around specific motion
primitives. By exploiting not only information about motion, but
also the relationships between the manipulator and the objects,
in the form of affordances, the system is capable of assisting
the human operator in order to improve the teleoperation
task performances. We test the algorithm with a Microsoft
Kinect RGBD sensor that allows human body pose tracking
and the semi-humanoid Baxter Robot by Rethink Robotics as
teleoperated platform.

I. INTRODUCTION

Teleoperated robotic systems are nowadays widely em-
ployed in several application fields ranging from spatial to
surgical and assistive applications in general.
The employment of such systems solves issues related to
human security, as in the case in which there is the necessity
to operate in hazardous environments; teleoperation is also
helpful every time there is the need to transfer particular
skills of a human to a remote environment, as in the case
of DARPA’s robotic challenge in 2015. DARPA’s challenge
demonstrated that tele-guided humanoid robots are the key
to tackle the need to transfer human manipulative skill
to a remote place. Nevertheless the challenge showed that
such systems are very difficult to guide and they require a
specifically trained and very skilled operator [1]. In these
cases we can use the term expert-in-the-loop and not the
classical human-in-the-loop one. The necessity of an expert
doesn’t only extend the training time to get such a system
fully-working but also introduces risks about robustness
because the difficulty to independently control all the degrees
of freedom of the robot increases the risk of executing a
wrong and potentially dangerous motion.

This paper tackles the teleoperation problem from a high
level methodological viewpoint and it doesn’t address the
classical stability and predictive theory to solve problems
related to time delays on communication channels [2]. The
main objective of this work is thus to develop a high level
software supervisor capable of selectively adding constraints
that support the human operator in executing a specific
teleoperation task. Such additional contraints are helpful in
all the cases where the precision of the overall teleoperated

1All authors are with Scuola Superiore Sant’Anna, TeCiP Institute,
PERCRO. Email: n.lastname@santannapisa.it

system is not enough to guarantee fine grained object manip-
ulation. We demonstrate that free pose control of the remote
robot reduces the precision in performing tasks for which fine
grained motion is required, like grasping an object whose
geometry requires a very good alignment to be successfully
picked. The rest of the work is organized as follows: sec-
tion II reviews the state of the art concerning Kinematics
mapping, Virtual Fixtures and Human action recognition; in
section III the proposed system model and details about the
supervisor architecture are presented; in section IV the tools
employed for the experiments are described; in section V
experiments and results are presented.

II. RELATED WORK

A. Kinematics mapping

A fundamental issue of robot telecontrol is the mapping
between the master and the slave kinematic chains. This issue
is simply solved if the master and the slave have the same
kinematics, in fact in this case a joint-to-joint mapping solves
the problem. In the case where the two kinematic chains are
different, an inverse kinematics mapping is usually used, as
in our previous work [3]. This approach requires that the
inverse kinematics is repeatedly solved in order to find the
joints configuration of the slave robot that minimizes the
error between the relative positions of the master and slave
end-effectors with respect to their base frames. Different
approaches can be also found in the literature that don’t
employ explicit Jacobian based inverse kinematics schemes,
but they adopt machine learning techniques. Stanton et al. [4]
propose a machine learning based method that, by capturing
a dataset of corresponding robot-human motions, trains a
neural network that allows to generalize human movements
and substitute classical inverse kinematics algorithms. How-
ever, such approach doesn’t allow to predict system perfor-
mance in terms of mapping error for all human movements
and there is no simple way to explain its convergence results.

B. Virtual Fixtures

In the field of teleoperation, additional motion constraints
as collaborative control strategies are called ”Virtual Fix-
tures” or ”Active contraints” [5]. These strategies are usually
implemented by a form of admittance and/or impedance
control that simplify the teleoperation task by limiting the
controllable robot motion to a particular task-specific path-
way. One of the first papers proposing such control concept
is [6], in which the authors assert that augmenting the haptic
feedback given to the master, and so limiting the motion of
the slave according to prescribed performance criteria, sub-
stantially improves task performances in terms of execution

time, mental effort and motion errors. Another attempt to
introduce constraints in cartesian motion of a telecontrolled
robot to improve teleoperation performances is proposed by
Funda et al. [7], it uses an augmented Jacobian formulation
in the inverse kinematics mapping function between the
master and slave of the teleoperation system in order to
enforce absolute contraints imposed by physical limitations.
A more recent approach is proposed by Casavola et al.
[8] that introduces a ”Command Governor” in a bilateral
teleoperation system that, using a predictive model of the
remote process, modifies the reference given to the closed
loop controller according to a policy that avoids violation of
constraints, like the tracking error and the maximum contact
force that can arise between the robot end-effector and the
environment.

C. Visual based human action classification

Common approaches tend to preprocess frames to be
classified in order to extract relevant features that are after-
wards used to classify and label the action [9]. Most of the
approaches in the literature are based on algorithms that are
trained on big datasets containing relevant cases to classify.
An important issue is the intra-class variatibility, indeed
different humans do the same action in different manners
with different speed and also with different orders of sub-
activity that compose the overall activity. An important topic
of action classification concerns the relationships existing
between humans and the surrounding objects.[10]. A recent
approach proposed in [10] models the human sub-activity
and its relationship with the objects as a Markov Random
Field (MRF), then it proposes a machine learning algorithm
formulated as Structural Support Vector Machine (SSVM)
that is trained with a big set of features extracted from a
dataset of labeled RGB-D videos. Among the used features
there are the human joints positions (extracted with the
machine learning algorithm proposed in [11]) and the object
trajectories (extracted with a visual object pose estimation al-
gorithm). The resulting algorithm is capable to automatically
label a video in terms of sub-activity and object affordances.
Li et al. [12] employs an action graph that models the
dynamics of human motion and the body posture is assumed
to be a bag of 3D points. The algorithm is able to classify
a set of 20 different actions. Papadopulos et al. [13] uses
a Random Markov Model to perform classification starting
from motion data provided by skeleton tracker proposed
in [11]. Finally [14] proposes the use of dynamic time
wrapping to preprocess human motion data and perform
actions classification.

III. PROPOSED APPROACH

In this section we present our approach. In particular we
first expose the high level system modeling, then we describe
the algorithms used to solve issues related sub-tasks like the
visual based tracker for both human and objects and the
kinematic mapping function.

A. System model

The considered scenario comprises a human operator
whose movements are estimated and mapped to a robotic
manipulator. The robot is equipped with a gripper that is
controllable by the human through a wearable interface. We
model the remote environment, comprising the telecontrolled
robot and the objects in the surroundings using an oriented
graph. Each node represents either the robot or an object.
The edges between the robot and the objects represent the
affordances, a set of labels describing a set of discrete actions
the robot can perform interacting with an object. The edges
between the objects represent the way the robot can interact
with an object through another one, hereinafter mentioned
as object affordances, e.g. open a lock with a key, fill a
glass with a bottle, clean a table with a sponge. Note that
the objects that have a state, like the lock, are considered as
multiple objects, each for each possible state it can assume.
This assumption is made to manage different affordances
that an object can have depending on its particular state,
e.g. a lock can be openable if it is closed and closable if
it is open. Subsequently we implicitly make the assumption
that the object recognition algorithm is able to recognize
the particular state in which an object can be. The graph
is automatically built starting from two sets of predefined
labels for each object that can be found in the scene: a set
containing the actions that can be done by a particular entity
and a set containing the actions that can be performed on
an entity. The two sets are here defined actionsX and slotsX
where the subscript X indicates a generic object. The graph
always contains a node representing the robot and a node
for each object in the scene. An edge connects two nodes
A and B, going from A to B, if the set slotsB contains an
element that matches with an element in actionsA. The robot
only has the actionsROBOT set because it is assumed that
no action can be executed by an object versus the robot.

B. Supervisor state machine

Once the graph explaining the relationship between the
entities in the remote environment is built, it is automatically
translated in a state machine that will represent the supervisor
controller of the teleoperation. In particular such a state
machine will have an initial state called FREE MOTION
that represents the absence of any type of constraint on the
motion of the robot. Then for each edge coming from the
robot node in the graph, a new state is added to the state
machine called ACTIONX , representing the presence of a
supervised interaction between the robot and the object X
that is basically the task of reaching a preferred grasping
position. From the ACTIONX state the state machine can
go in another state called FREE MOTIONX representing an
unconstrained motion of the robot with the object X grasped
by its end-effector. For each FREE MOTIONX state there is
an additional state for each edge coming from the object
X node. Such state is called INTERACTIONX,Y , where
Y indicates the generic target node of the edge coming
from node X . When in FREE MOTIONX , depending on
whether user wishes either to move and release the object

or to interact with another object through object X , the
state machine can either return to the initial state FREE
MOTION or go to one of the possible INTERACTION states,
after the interaction is completed, it returns to initial FREE
MOTIONX state.

C. Active constraints

In this section we describe how the supervisor acts in
the ACTIONX and INTERACTIONX,Y states. These states
represent the situation in which supervisor recognized the
intention of the user to interact with a particular object.
We implemented active constraints in the form of modifi-
cation of the reference position given to the robot. Let us
introduce a reference frame, named {ApproachX} (with
X indicating the object to interact with), attached to the
object. Such reference frame has its z-axis directed as a
predefined preferred approaching direction and the x-y axis
generating a generic plane orthogonal to z-axis. Let xH be
the human hand position with respect to the human torso,
regardless of whether it’s the left or right hand. Let us
assume that the human torso and the robot torso reference
frames are coherent in a way that we can consider that the
reference position of the robot end-effector, denoted as x̄R,
is equal to xH when the supervising state machine is in a
FREEMOTION state.

Differently, when in an ACTION state, the supervisor
guides the motion inside a constrained region that conducts
to a preferred grasping position with a tolerance decreasing
with the distance from the object along the z-axis of its
{Approach} frame. We implemented such active constraint
as a virtual spring that modifies the motion on the plane
defined by x-y axis of {Approach} frame, while the compo-
nent along the z-axis is not modified. The modification of the
{Approach}-planar components tends to constraint the mo-
tion of the robot end-effector on the z-axis of {Approach}
frame while it nears to the object.

The complete equations are the following:

Ax̄R = TA,B
Bx̄R =


Ax̄R,x
Ax̄R,y
Ax̄R,z

1

 (1)

where the pre-superscripts in Ax̄R and Bx̄R mean that xR

is written in coordinates with respect to B (robot {Base}
frame) and A ({Approach} frame) frames. TA,B is thus the
homogeneous transformation matrix between {Approach}
and robot {Base} frames. Pedices x, y, z represent the x, y
and z components of a vector.
The constrained reference position is obtained as follows:

Ax̃R =


α Ax̄R,x

α Ax̄R,y
Ax̄R,z

1

 (2)

where Ax̃R indicates the constrained reference position
expressed in coordinates with respect to {Approach} frame.

The scaling value α is set equal to:

α = log
(
1 + Ax̄R,z

)
(3)

this value of alpha constraints the end-effector position to
be on the z-axis of {Approach} frame while it is near the
object.
The final constrained reference for the end-effector position
with respect to robot {Base} frame is obtained as:

Bx̃R = TB,A
Ax̃R (4)

A graphical illustration of the proposed constrained region
is depicted in figure 1.
When in an INTERACTION state instead, either the
commanded end-effector position is rigidly constrained to
a predefined interaction region of the object to interact with,
or if the kind of interaction requires a fine grained alignment
it is the same as the ACTION state.

Fig. 1. An illustration of the virtual fixture: for a given grasp point of
the object the virtual fixture acts as an force field that eases the vertical
approaching motion for the optimal grasp, and provides a lateral force
feedback. When the end-effector exits from the lateral side of the region
the fixture is disabled and the state is changed.

D. Intention Classification

To tackle intention classification problem, our approach
employs machine learning techniques. We propose to collect
a large dataset containing relative poses of the objects with
respect to an end-effector fixed reference frame and labeled
commanded robot end-effector trajectories. Note that the
objects can be placed in different positions with respect to the
robot, hence the robot can approach an object from different
directions. We define a time dependent vector of features
φ (t) that contains the following data:

• the distances between the end-effector and the objects
• the time-derivative of the distance between the end-

effector and the objects
• the angles between the line-of-sight from the end-

effector to each object and the instantaneous velocity
vector of the robot end-effector.

φ(t) =



d (R,xO1
)

d (R,xO2
)

...

ḋ (R,xO1)

ḋ (R,xO2
)

...

ḋ (R,xON
)

cos−1
(

vR·sR,O1

|vR|

)
cos−1

(
vR·sR,O2

|vR|

)
...

cos−1
(

vR·sR,ON

|vR|

)



(5)

where N indicates the total number of objects, sR,Oi
=

(xOi
−xR)

|xOi
−xR| the direction of the line-of-sight from the robot

end-effector to a generic object i and vR the velocity vector
of the end-effector. These chosen features are independent
from any reference frame and approaching direction. Start-
ing from the collected data we train a neural network to
classify the intention from only the first segments of the
recorded trajectories, in terms of which object the controlled
robot is going to interact with. This approach allows an
early classification of the actions, allowing to trigger the
supervising controller state transitions. The classification is
filtered according to the possibilities expressed by the graph
and thus by the state machine introduced in section III-B.
The successful classification of an intention triggers the state
machine transitions and allows to change the behavior of the
system as explained in the section III-C.

E. Human and objects tracking

We employed the algorithm proposed by [11] to track
human joints from RGB-D images provided by a Microsoft
Kinect sensor. Shotton et al. [11] trained a Random Decision
Forest (RDF) on a very huge amount of synthetically gener-
ated and labeled data to perform human body pose estimation
from features related to local changes in the depth image. We
used the OpenNI implementation of such algorithm.
To track objects in the scene we used Aruco fiducial markers
[15]. Markers are tracked by an external RGB camera cali-
brated with the robot base. The calibration allowed to recover
the object pose with respect to the robot end-effector useful
to calculate the features vector defined in eq. 5. In a more
realistic scenario we could employ object tracking algorithm
and the current choice of employing fiducial markers is
not affecting the concept and realization of the proposed
approach.

F. Kinematic mapping

We solve inverse kinematics with an iterative scheme
based on pseudo-inverse of robot Jacobian matrix to map the
human hand movements to the robot. We project additional
subtasks into the Jacobian Null-space in order to satisfy
additional constraints like big variations in robot joints angles
for little movements of the robot end-effector and to penalize
joints values near to physical limits. Details about kinematic
mapping are reported in the appendix VI-B.

IV. TOOLS

In this section we will describe the employed tools to
conduct the experimental phase of this work.

A. Microsoft Kinect sensor

We used a Microsoft Kinect sensor together with the
OpenNI2 library that implements the algorithm of [11]. The
Microsoft Kinect sensor provides an RGB image and a Depth
image respectively with a resolution 640x480 pixels and
320x240 pixels at a rate of 30Hz. The OpenNI2 library pro-
cesses these data in order to provide human joints positions
with respect to a camera fixed reference frame. Since we
need the relative position of the user hands with respect to his
torso, we estimate the homogeneous transformation matrix
between the camera and the torso of the user by processing
the data provided by the OpenNI2 library. We then compute
the hands markers coordinates with respect to a torso fixed
reference frame. Details about how the transformation matrix
is computed are reported in appendix VI-A.

B. Baxter Robot

We used the Baxter Research Robot from Rethink
Robotics for the experiment. The Baxter robot is a semi-
humanoid robot with two 7-degrees-of-freedom arms. The
arms have two electric 1-degree-of-freedom grippers on its
end-effectors that allow pick-and-place operations. The robot
is interfaced with the ROS operating system allowing rapid-
development of complex robotic application. Different arms
control modes are offered by the built-in controllers. We used
the Joint Position control mode that allows to set reference
values for each joint controller. In addition, the Joint Position
control mode avoids auto-collision between the arms and
the torso. An overview of the chosen control architecture
is illustrated in figure 2.

V. EXPERIMENTAL RESULTS

Experiments were conducted to demonstrate the effec-
tiveness of the proposed approach. First, we collected a
dataset containing the commanded trajectories of the robot
by the teleoperating user tracked with the Kinect sensor. The
dataset also contains objects tracked positions and the labeled
intentions of the user in terms of what object he is going
to interact with. In particular, our scenario comprises three
objects: a pot, a lid and a scoop, which are illustrated in
figure 3. At this stage these objects have been selected for
being easily grasped by the Baxter gripper.
We collected 45 robot end-effector trajectories grasping three

Fig. 2. Joint Position controller overview. (Courtesy Rethink Robotics
http://sdk.rethinkrobotics.com/wiki/Arm_Control_
Modes)

different objects (15 for each object) moving each object
in three different positions (5 trajectories for each object
position). Then we divided the first part of such trajectories
in segments of 1 second of duration extracting 93 labeled
segments. For each segment we computed the features as
expressed in equation 5 and we trained a motion pattern
recognition neural network with the Matlab Neural Networks
Toolbox. We set up the neural network to have a single
hidden layer with 30 neurons. The result of the optimally
trained network is shown as confusion matrix in figure 4.

Fig. 3. Objects used for the experiments with the fiducial markers attached
for their localization. The image is taken from RViz and shows the reference
frames associated to each marker.

The trained network is able to classify the user intention
with a very low failure rate. Once the classification network

1 2 3

Target Class

1

2

3

O
u

tp
u

t
C

la
ss

Training Confusion Matrix

22
33.8%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

22
33.8%

0
0.0%

100%
0.0%

1
1.5%

0
0.0%

20
30.8%

95.2%
4.8%

95.7%
4.3%

100%
0.0%

100%
0.0%

98.5%
1.5%

1 2 3

Target Class

1

2

3

O
u

tp
u

t
C

la
ss

Validation Confusion Matrix

5
35.7%

0
0.0%

0
0.0%

100%
0.0%

1
7.1%

3
21.4%

0
0.0%

75.0%
25.0%

0
0.0%

0
0.0%

5
35.7%

100%
0.0%

83.3%
16.7%

100%
0.0%

100%
0.0%

92.9%
7.1%

1 2 3

Target Class

1

2

3

O
u

tp
u

t
C

la
ss

Test Confusion Matrix

6
42.9%

0
0.0%

0
0.0%

100%
0.0%

1
7.1%

3
21.4%

0
0.0%

75.0%
25.0%

0
0.0%

0
0.0%

4
28.6%

100%
0.0%

85.7%
14.3%

100%
0.0%

100%
0.0%

92.9%
7.1%

1 2 3

Target Class

1

2

3

O
u

tp
u

t
C

la
ss

All Confusion Matrix

33
35.5%

0
0.0%

0
0.0%

100%
0.0%

2
2.2%

28
30.1%

0
0.0%

93.3%
6.7%

1
1.1%

0
0.0%

29
31.2%

96.7%
3.3%

91.7%
8.3%

100%
0.0%

100%
0.0%

96.8%
3.2%

Fig. 4. Confusion matrix of the trained neural network for motion pattern
recognition

was trained, we designed and implemented the supervising
state machine for the examined case as exposed in section
III-A. The properties of the objects gave the relations graph
as in figure 5.

The relations graph is translated into the state machine
illustrated in figure 6 as exposed in section III-B. With this
architecture we tested the system by teleoperating it to pick
the lid. The performances of the teleoperation improved in
terms of positioning error and elapsed time as illustrated in
figure 8 and 9. The elapsed time to complete the task reduced
from a mean value of 6 seconds wihout additional constraints
to 3 seconds with the virtual fixtures as illustrated by the
boxplot in figure 7.

VI. CONCLUSIONS
In this work we developed a model for robot teleoperation

that introduces constraints on the robot movements according
to the output of an intention classifier and an affordances-
based relationship graph. The introduction of virtual fixtures
on the robot motion improved teleoperation performance in
terms of positioning error and elapsed time to complete a
predefined task, although in a preliminary single-subject test.
Future work will include a more accurate modelling of user
intentions in order to develop a classifier algorithm based on
probabilistic modeling of the actions. While preserving the
concept introduced in this work we’ll need to automatically
segment the examples and evaluate different classification
techniques. In addition, we also will investigate the gener-
alization of the virtual fixture model that can simplify the
teleoperation of robots with various end-effector types having
multiple degrees-of-freedom.

http://sdk.rethinkrobotics.com/wiki/Arm_Control_Modes
http://sdk.rethinkrobotics.com/wiki/Arm_Control_Modes

Robot

ScoopLid

Pot

Affordances
based actions
Object affordances
based actions

Fig. 5. The graph for the examined case

Fig. 6. The state machine derived from graph of figure 5

APPENDIX

A. Estimation of Torso Frame

Among the markers provided by OpenNI library, the ones
that we used to estimate the transformation matrix between
a Torso (T) fixed frame and the Camera frame (C) are: left
shoulder xC

LS , right shoulder xC
RS , neck xC

NE and torso xC
TO.

The superscript C indicates that the markers are written in
Camera frame coordinates. The rotation matrix of the overall
transformation matrix was obtained as follows:

ũy =
CxLS −C xRS

‖CxLS −C xRS‖
(6)

uz =
CxNE −C xTO

‖CxNE −C xTO‖
(7)

ux = ũy × uz (8)

With Fixture Without Fixture

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

D
ur

at
io

n
(s

)

Duration of 'pick lid' task
 in function of the presence of the motion constraint

Fig. 7. Variations in task duration in presence and absence of the virtual
fixture

0 0.5 1 1.5 2 2.5 3 3.5 4

time (s)

-0.1

0

0.1

(m
)

x coordinate

0 0.5 1 1.5 2 2.5 3 3.5 4

time (s)

-0.2

0

0.2

(m
)

y coordinate

0 0.5 1 1.5 2 2.5 3 3.5 4

time (s)

-1

-0.5

0

(m
)

z coordinate

Fig. 8. Difference between robot end-effector trajectories and target object
position with active constraint (left hand). Colors encode different trials.

uy = uz × ux (9)

R T,C =
(
ux uy uz

)
(10)

The overall homogeneous transformation matrix TT
C be-

tween Camera and Torso was obtained by adding the Torso
position as translation vector:

T T,C =

(
RT,C

Cc T,C

0 1

)
(11)

This allows to convert a point from coordinates with
respect to Kinect Camera frame to coordinates with respect
to Torso frame.

Tx = TT,C
Cx (12)

0 1 2 3 4 5 6 7 8 9

time (s)

-0.5

0

0.5
(m

)
x coordinate

0 1 2 3 4 5 6 7 8 9

time (s)

-0.5

0

0.5

(m
)

y coordinate

0 1 2 3 4 5 6 7 8 9

time (s)

-0.4

-0.2

0

(m
)

z coordinate

Fig. 9. Difference between robot end-effector trajectories and target object
position without active constraint (left hand). Colors encode different trials.

B. Inverse kinematics mapping

To map human movement on the robotic manipulator
we implemented an inverse kinematics iterative algorithm.
The algorithm uses the pseudoinverse of the robot Jacobian
matrix that maps the derivative of joints angles to the end-
effector velocity, ẋR = J (q) q̇, with q indicating the vector
of the joints angles. We added a subtask projected into the
null space of the Jacobian matrix in order to minimize the
distance of the joints configuration from the middle point of
joints limits. We defined the classical objective function:

H (q) =
1

2

nq∑
i=1

(
qi − qi,mid

qi,M − qi,m

)2

(13)

where qi,M and qi,m represent the maximum and mini-
mum value for each joint respectively. qi,mid is the middle
value of each joint angle qi,mid = (qi,M + qi,m) /2. The final
inverse kinematics iterative algorithm is:

qk+1 = qk+J+ (xH,k − xR,k)+
(
I − J+J

)
∇H (qk) (14)

where J indicates the robot Jacobian matrix and the
explicit dependence from joints angles vector q is omitted
for brevity.

.

REFERENCES

[1] M. Johnson, B. Shrewsbury, S. Bertrand, T. Wu, D. Duran, M. Floyd,
P. Abeles, D. Stephen, N. Mertins, A. Lesman et al., “Team ihmc’s
lessons learned from the darpa robotics challenge trials,” Journal of
Field Robotics, vol. 32, no. 2, pp. 192–208, 2015.

[2] T. B. Sheridan, “Space teleoperation through time delay: Review and
prognosis,” IEEE Transactions on robotics and Automation, vol. 9,
no. 5, pp. 592–606, 1993.

[3] A. Graziano, P. Tripicchio, C. A. Avizzano, and E. Ruffaldi, “A
wireless haptic data suit for controlling humanoid robots,” in ISR 2016:
47st International Symposium on Robotics; Proceedings of. VDE,
2016, pp. 1–8.

[4] C. Stanton, A. Bogdanovych, and E. Ratanasena, “Teleoperation of a
humanoid robot using full-body motion capture, example movements,
and machine learning,” in Proc. Australasian Conference on Robotics
and Automation, 2012.

[5] S. A. Bowyer, B. L. Davies, and F. R. y Baena, “Active con-
straints/virtual fixtures: A survey,” IEEE Transactions on Robotics,
vol. 30, no. 1, pp. 138–157, 2014.

[6] L. B. Rosenberg, “The use of virtual fixtures as perceptual overlays
to enhance operator performance in remote environments.” DTIC
Document, Tech. Rep., 1992.

[7] J. Funda, R. H. Taylor, B. Eldridge, S. Gomory, and K. G.
Gruben, “Constrained cartesian motion control for teleoperated surgi-
cal robots,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 3, pp. 453–465, 1996.

[8] A. Casavola and M. Sorbara, “Towards constrained teleoperation
for safe long-distance robotic surgical operations,” in Robotics and
Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE Inter-
national Conference on. IEEE, 2005, pp. 685–690.

[9] R. Poppe, “A survey on vision-based human action recognition,” Image
and vision computing, vol. 28, no. 6, pp. 976–990, 2010.

[10] H. S. Koppula, R. Gupta, and A. Saxena, “Learning human activities
and object affordances from rgb-d videos,” The International Journal
of Robotics Research, vol. 32, no. 8, pp. 951–970, 2013.

[11] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio,
A. Blake, M. Cook, and R. Moore, “Real-time human pose recognition
in parts from single depth images,” Communications of the ACM,
vol. 56, no. 1, pp. 116–124, 2013.

[12] W. Li, Z. Zhang, and Z. Liu, “Action recognition based on a bag
of 3d points,” in Computer Vision and Pattern Recognition Workshops
(CVPRW), 2010 IEEE Computer Society Conference on. IEEE, 2010,
pp. 9–14.

[13] G. T. Papadopoulos, A. Axenopoulos, and P. Daras, “Real-time
skeleton-tracking-based human action recognition using kinect data,”
in International Conference on Multimedia Modeling. Springer, 2014,
pp. 473–483.

[14] S. Sempena, N. U. Maulidevi, and P. R. Aryan, “Human action
recognition using dynamic time warping,” in Electrical Engineering
and Informatics (ICEEI), 2011 International Conference on. IEEE,
2011, pp. 1–5.

[15] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J.
Marı́n-Jiménez, “Automatic generation and detection of highly reliable
fiducial markers under occlusion,” Pattern Recognition, vol. 47, no. 6,
pp. 2280–2292, 2014.

	INTRODUCTION
	RELATED WORK
	Kinematics mapping
	Virtual Fixtures
	Visual based human action classification

	PROPOSED APPROACH
	System model
	Supervisor state machine
	Active constraints
	Intention Classification
	Human and objects tracking
	Kinematic mapping

	TOOLS
	Microsoft Kinect sensor
	Baxter Robot

	EXPERIMENTAL RESULTS
	CONCLUSIONS
	Estimation of Torso Frame
	Inverse kinematics mapping

	References

