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Abstract—Teleoperation in robotic embodiments allows oper-
ators to perform and program manipulation tasks with better
accuracy, dexterity, and visualization than what is possible with
traditional human-robot interaction paradigms. However, the
perception of cues (e.g. egocentric distances) relevant to task
execution, is known to be distorted in virtual environments due
to many factors, which can be grouped into technical, human
and methodological categories. This phenomenon becomes more
pronounced in a low-cost/encumbrance setup, where the dynamic
environment is captured with color & depth (RGB-D) cameras
and presented in a virtual environment.

In this work, the effects of augmented reality (AR) are
evaluated as a tool to deliver additional information, which helps
in overcoming the differences in perception between telepresence
and actual presence. The AR feedback is used to improve the
embodiment illusion and to guide the operator during task
execution. The AR setup, comprising an RGB-D camera and a
head-mounted display, is integrated with the Baxter Robot and
evaluated by involving 22 participants in an experiment, while
they execute a pick-and-place task, taking into account their
expertise in AR/VR and Gaming.

The use of AR results in enhancing the accuracy and efficiency
of the task performance, besides significantly reducing the effect
of the differences in skillfulness between the participants. Fur-
thermore,it is found that the sense of presence and embodiment
for the participant is positively affected by different types of AR.

Index Terms—Telerobotics, Augmented reality, Humanoid
robots, Intelligent manufacturing systems, Wearable sensors

I. INTRODUCTION

ECENT advances in robotics are characterized by an

impressive evolution of humanoid robots that culminated
in the DARPA Robotics Challenge in June, 2015. Humanoid
robots are designed to operate in human environments with
minimal modifications. This type of robot can be used, par-
ticularly, in hazardous scenarios, such as rescue missions and
industrial manufacturing. Despite humanoid robots’ capability
to autonomously perform a gamut of tasks, those robots still
need human guidance when executing complex tasks, typically
by means of teleoperation. In the particular case of teleoper-
ation through body-based interfaces, humanoid robots have
proved to be ideal, thanks to the capability of straightforward
mapping between the human operator’s motion and the robot’s
motion [1], [2], [3].

Institute  of
(corresponding

Authors  are
Scuola Superiore Sant’Anna,
e.ruffaldi@santannapisa.it).

Manuscript received May 5, 2016; revised XXX XXX, 2016.

with PERCRO laboratory of TeCiP
Pisa, PI, 56100 e-mail:

Nevertheless, there are several aspects that make teleop-
eration a non-trivial task, such as delay and high latency
in end-to-end communication, visualization issues of remote
environment, difficulties in identifying the right objects to
interact with, and in judging the objects’ distances from the
robot end-effector [4]. Producing a teleoperation system that
can provide the operator with the same quality and quantity of
visual information as what would be possible when the oper-
ator is physically present in the remote place, is an extremely
complex task. The less complex methods utilize a static camera
and a monitor [S], [6] to provide a mono-vision feedback,
where the perception of distances is constrained by the lack
of parallax. Such constraints are usually overcome through
the learning process of the operator. When the teleoperation
scenario requires an advanced form of visual feedback, either
multi-modal feedback is integrated [7] or the operator is
“cheated” by utilizing some advanced visualization technique
to increase his/her illusion of being in the remote place [3],
[9]. Complex visual feedback usually requires implementation
of a virtual version of the remote environment. But, the use
of virtualized environments leads to perceptual issues, such as
the perception of egocentric distances [[10]], and loss of visual
acuity and contrast [[11l], which have been empirically proven
to influence the action capabilities of the body [12].

Augmented Reality (AR) has proven [13]] to be a viable
solution to overcome visual feedback limitations by providing
additional information to the operator. AR solutions for teleop-
eration can be divided into two categories, which are mutually
complementary: embodiment enhancement and virtual fixture.

Embodiment enhancement refers to the capability of making
the operator feel that he/she is in the remote environment, and
he/she is the robot [14]]. Such capability is obtained by placing
the camera on the head of the robot and showing the received
image to the operator by means of a Head Mounted Display
(HMD). The vision problem associated with this camera-based
approach is generically considered trivial, although it is often
one of the major causes of poor performance in teleoperation
tasks. The motivation behind using this method is enabling
the operator to see the current position of the end-effector by
eliminating the problems caused by the limited field of view
and low resolution of the cameras, and the bulky size of the
robots, which obstructs the scenes view.

The second category of AR solutions employs virtual fix-
tures [15] to help the operator in overcoming the difficulties
of perceiving the remote environment, and to guide him or
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her in accomplishing the tasks. Virtual fixtures refer to virtual
images or objects, overlain on the remote scene, to provide the
operator with visual cues that highlight the points of interest
and useful information for accomplishing the given task [16]].
Virtual fixtures have been proved to be capable of speeding up
the execution of a teleoperation task, especially in high-latency
scenarios [17]]. Virtual fixtures also serve as an effective tool in
teleoperation by providing sensory substitution, particularly in
perceiving force feedback in the absence of haptic device[18].

Although AR has been successfully applied to reduce the
rate of task error in many robotic teleoperation scenarios, no
studies were so far carried out to assess the impact of AR
multiple features.

This work studies the effects of AR in a generic industrial
assembly scenario. In particular, this paper addresses the use
of both task-related and non-task related features and their
combination, by quantifying the features’ effects not only on
the task performance, but also on the operator’s sense of
telepresence and embodiment. The study shows that specific
findings are associated with different types of operators’
expertise in AR/VR and gaming.

The remainder of this paper is organized as follows. Sec-
tion [II| describes the experiment’s rationale, setup and trials,
followed by data analysis and participants’ demographic par-
ticulars; Section reports the results of experimental data;
and Section discusses the results and its implications for
future development.

II. MATERIALS AND METHODS

The fundamental question addressed in this work is how
different types of AR features impact the operator’s expe-
rience and performance. The other issues addressed by this
work include: 1) understanding the extent to which excessive
visual information can be detrimental and 2) evaluating the
non-task specific AR features. Therefore, the focus was on
exploring the effects of 3D AR feedback on the presence,
embodiment and ease of task execution, while accounting for
the possible effects of participants’ expertise. Measures were
taken to minimize the learning effect that could arise during
the execution of the experimental trials.

All these questions were sought to be answered by under-
taking an experiment that simulates an industrial assembly
scenario, which forms one primary application field for AR.
The tasks involve a pick-and-place operation by teleoperating
a robot, seen from an egocentric point of view. The task
execution is parametrized in terms of completion time and
placement accuracy. Furthermore, the operators’ hand trajec-
tories were analyzed, together with their subjective sense of
telepresence and embodiment, in different conditions. Also,
the combinations of the chosen features were evaluated.

A. Augmented Reality

To create accurate and effective AR feedback, it is necessary
to extract as much information as possible from the remote
environment, exploiting all the available sensors. In the pre-
sented scenario, the available sensors were a color & depth
(RGB-D) camera and the robot’s joint encoders. Exploiting

TABLE I
THE IMPLEMENTED VISUAL CUES AND THE CORRESPONDING CLASSES
AND GROUPS.

Feature
3D Robot Model

Class Group
Embodiment -

Virtual Fix-  Manipulation In-
ture formation

Trajectory to the object grasping
point (3D beam) - Distance from the
target object (color bar) - Gripper
closure (color bar) - Mesh of the
object to be grasped

Virtual Fix-

Task Information
ture

Objects Target Poses

the state of the art computer vision algorithms, it is possible
to track the pose of the target objects to be manipulated. The
calibration between the robot and the camera allows for co-
locating the robot and the remote environment by obtaining
their exact relative poses. This information can be used as
an AR feature, because it is not directly inferable by humans
owing to the difficulty in perceiving distances accurately in a
virtual scenario [[19].

Different types of augmented information were imple-
mented. The features can be categorized into two classes:
embodiment and visual virtual fixtures. These two categories
of AR features were chosen, because they are considered to
be possibly the most informative ones to aid task execution.

The embodiment class comprises information that can help
the operator in improving the overall sensation of embodiment
and illusion of presence. In the setup used for this work, the
embodiment class comprises two features. The first feature
enables the operator to explore the remote environment by
changing the virtual viewpoint with head and body move-
ments. The second, and novel feature, is a virtual 1:1 scale
model of the remote robot that is animated by the real robot’s
movements (see Figure a)). This feature allows the operator
to see the position of the robot’s end-effector when it is
not visible in the camera’s field of view. The display helps
the operator understand the robot’s position in the remote
environment.

The chosen visual virtual fixtures, listed in Table E], provide
different types of information, which can be classified into
two main sub-groups, according to the information they de-
liver: manipulation information and task information. The
fixtures that belong to the manipulation group (see Figure [T[b))
deliver additional information, relating to object manipulation,
such as distances from the object’s grasp points (green bar)
and robot grip closure (blue bar). The fixtures also include a
red 3D beam representing, in real-time, the optimal trajectory
between the robot end-effector and the closest grasp point of
the object. The visual virtual fixtures that belong to the task
group are used to highlight information relating to the task
execution. The fixtures are characterized by a green 1:1 3D
mesh of the real object, placed in the task’s target pose (see
Figure [T{c)). AR features that deliver information, relating to
the task execution, have been demonstrated to significantly
reduce error rates in assembly tasks [20].
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(a) Embodiment. Image of the 1:1 scale (b) Manipulation information. Blue (c) Task information. In the target pose
model of the remote robot animated by bar: gripper closure. Green bar: distance a green 3D mesh of the task object
the real robot’s movements. The overlaid from target. Red beam: shortest trajec- (bowl) is placed. The placement of the
model allows to see the position of the tory from the robot’s end-effector to the object succeeds if the real bowl and the

robot limbs even if not in the real camera bowl’s grasp point.

view space. The picture shows the pre-
cise overlay of the 3D model of the robot
with the pointcloud from the 3D camera.

green one perfectly match.

Fig. 1. Three different groups of AR features (a, b & c) used in the experiment.

B. Implementation

The AR feedback component was developed using a ROS-
integrated framework for high-performance AR and Mixed
Reality (MR), called Compact Components (CoCo). CoCo
is composed of a core library and several modules, each
specialized in managing particular elements of an AR/MR ap-
plication [21]]. CoCo provides for high-performance execution
on modern multicore machine, thanks to the support available
for parallel programming constructs. The use of CoCo for the
mixed reality display, instead of the ROS’s RViz viewer, is
motivated by the high visual feedback requirements and VR
devices support. The CoCo library is used to create a 3D mesh
from camera streams and to augment it with additional infor-
mation. In particular, the first CoCo module receives and de-
compresses the video and depth streams from the camera. The
color channel is streamed using h.264 compression (435kbps
on average) and the depth channel with znl6 compression
from OpenNI2 (21Mbps on average). The second module
reconstructs a pointcloud with interpolated points from the
decompressed buffers. This operation is performed to enhance
the quality of the mesh of the virtual scene. The third module
does the graphic rendering for the augmented scene. The
end-to-end latency of the visualization is 89ms, as computed
after synchronizing the robot and graphics computers with the
Precision Time Protocol (PTP) [22].

A ROS-integrated teleoperation setup, analogous to one
previously presented by the authors [23]], was used to evaluate
the effects of AR in a remote teleoperation framework. The
systems architecture is shown in Figure [2] On the operator’s
side, a wearable device captures the movements of the oper-
ator’s upper limb and his pinch grip position through inertial
sensors and a custom haptic device [24]. The raw sensor data
was sent, via wireless, to the main computational unit, where
several ROS nodes reconstruct the operator’s motion and

combine it with the grip position to generate a control signal
for the teleoperated robot (Baxter Robot, Rethink Robotics,
Boston, Massachusetts, USA). On the remote robot side, the
environment in which the robot was acting was captured
through a Kinect 360 camera (Microsoft, Redmond, Washing-
ton, USA) placed on the top of the Baxter’s head, as shown
in Figure ] The camera was not actuated and its field of view
was fixed with respect of the robot’s pose. From the captured
pointcloud, a virtual scene was created, which was augmented
by the main computational unit with AR information coming
from the ROS Control node. The visual appearance of the
robot model used in the embodiment feedback is based on the
Universal Robot Description Format (URDF) of the Baxter
robot. The 3D AR scene was sent as a visual feedback to the
operator’s side and visualized with an HMD (Oculus Rift DK2,
Facebook, Menlo Park, California, USA). Further details about
the motion reconstruction algorithms, the haptic interface and
the control architecture can be found in the prior work of the
authors [23], [23]], [24].

C. Farticipants

Twenty-two operators (16 male, 6 females), aged between
23 and 40 years, all right-handed, participated in the study,
after giving their informed consent for participation. Their
familiarity with AR and virtual reality (VR) systems and video
games was assessed using a Likert scale related to expertise
(1 to 7), and in terms of number of hours the operators spend
on these technologies per week (1 for less than one hour, 2 for
two to five hours, and 3 for more than five hours). For this, they
were given the option of choosing between three answers: less
than one hour, between two and five hours, and more than five
hours. For what concerns expertise score AR/VR resulted in
an average score of 5.05 (£ 2.01) while video games in 5.38
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Fig. 2. The system’s setup. On the operator’s side, the upper limb motion
and the grip position were captured through a wearable interface. Operator’s
motion was reconstructed and used together with the grip position, to generate
a control signal for the teleoperated robot. The remote scene was captured
and virtualized; AR information was added to the virtual scenario, which can
be visualized on the operator’s side as a 3D visual feedback.

(£ 1.80). The time spent on AR/VR resulted in an average
score of 1.48 (£ 0.75) while videogames 1.62 (4 0.92).

D. Experimental Protocol

The participants completed a single experimental session.
Prior to the commencement of the session, the participants
were asked to read a written description of the experiment
and completed a questionnaire to assess their expertise. After
donning the wearable interface, the participants were asked to
perform a series of familiarization trials, followed by exper-
imental trials that involved performing remotely a pick-and-
place task of an object by teleoperating the Baxter robot, sim-
ulating the classical step of an industrial assembly task. The
object was a plastic bowl, which measured 16 cm in diameter
and 7cm in height. The bowl was chosen because it had radial
symmetry that helped in grasping without introducing any ro-
tational error while placing it. To normalize the task execution
among the participants, the starting and target positions of the
bowl on the table were fixed. A post-experiment questionnaire
assessed participants’ experience with AR during the trails (see
Appendix for the specific questions),

1) Familiarization: approximately 5-minute familiarization
trials allowed the participants to practice the task so that they
can perform the task correctly in its entirety and minimize
the effects of their learning during the experimental trials. In
particular, the participants had to perform the task of each
trial within a specified time frame. The allocated time frame
ensured the time for the robot for estimating the end-effector
motion base on participant’s upper limb motion, control of the
robot over the full manipulation workspace and proper grasp
and release of the remote object with the remote robot gripper.
During the first trial, the participants were allowed to share
the working space with the robot (i.e., without wearing the
HMD) and teleoperate it during several pick-and-place tasks.
During the second familiarization trial, the participants had to
teleoperate the robot, using the visual feedback (i.e., wearing
the HMD) without AR information, thus visualizing only the
virtual remote scene. During familiarization, the target object

was the same as used in the experiment, but the pick-and-
place locations were randomized. The participants performed
the trials until they and the investigators were confident that the
task could be performed in its entirety. Overall, the participants
required 3-4 repetitions of the pick-and-place trial to become
proficient in executing the aforementioned aspects of the task.

2) Experimental Trials: The participants were required to
perform the pick-and-place task of grasping and moving the
object as accurately as possible to its target pose. The partici-
pants executed the task under five different modalities of visual
feedback: 1) no AR information; 2) only AR information
relating to the Manipulation class is visualized in the feedback;
3) only AR information, related to the Embodiment group
is visualized; 4) only AR information, relating to the Task
group is visualized; 5) full AR feedback (all the features
relating to Embodiment, Manipulation and Task are activated
simultaneously). Figure [3] shows the remote scenario, wherein
the starting point (the cross on the table) and the target point
(the circular marker) are visible, and the robot is grasping
the target object. The left image shows the virtual scene, as
displayed to the participants, while the right image shows the
real environment.

Fig. 3. The virtual and the real remote environments captured simultaneously.
The image on the left shows the 3D environment captured from the camera
and rendered in the HMD, while the right image shows the real environment
from an external point of view. In both images, it is possible to see the robot
grasping the target object (bowl), the starting position of the object (cross
marker) and the target position (circular marker).

To minimize the learning effects, the trial order was ran-
domized. To simulate the effect of non-co-location between the
robot and the operator, the operator was acoustically isolated
from the environment and was asked to teleoperate the robot
over the Internet. For full experimental setup, see Figure [

To assess the effects of various types of AR feedback, sev-
eral variables, relating to task execution performance and task
execution modality, were monitored. The task completion time
and the accuracy of each placement of the object were used as
metrics for defining the execution performance. The accuracy
was expressed in terms of the Euclidean distance between the
actual position and the target position; no orientation error
was possible in measuring this metric, because the object had
radial symmetry.

Before the commencement of each task, the robot arm
was moved to a predefined rest position. For computing the
completion time of the task, the timer was configured so that
it started as soon as the operator started moving the arm to
grasp the object, and stopped once the operator released the
object and the system tracked its pose.
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Fig. 4. The full experimental setup. The participant teleoperate the robot over
the local network and he is acoustically isolated from the environment. The
robot-side environment is captured with an RGB-D camera and sent to the
operator as a 3D visual feedback through a HMD.

The trajectories of eight operators’ right-hands were also
recorded at 100Hz, which denotes the sampling frequency of
the inertial sensors (MPU9150, Invensense San Jose, Califor-
nia, USA) mounted on the wearable device.

E. Data Analysis

Analysis of the order effect was carried out to ensure that
no learning effect occurred, between successive trials. The
data relating to completion time and placement accuracy was
grouped according to their trial order numbers, and compared,
using one-way ANOVA. To quantify the differences in the
placement errors and execution times between the five AR
feedback modalities, all the distributions were first checked for
normality, using the Lilliefors test. Student’s t-test was used
to test for the differences in mean, when the resulting data
was normally distributed, and MannWhitney U-test, when the
resulting data was not normally distributed.

The smoothness of the participant’s right-hand trajectory
in the main motion plane (x-y) was used as an indicator of
skillfulness in the task execution [26]]. The effects of different
AR feedback conditions on the trajectory smoothness.

The smoothness of the trajectory was defined as the nor-
malized jerk (J), a metric commonly used to determine

smoothness:
~ D5
J = 1/2/j2(t)ﬁdt,
. L

where D is the duration and L is the length of the trajectory.
Low normalized jerk is indicative of smooth trajectory, and a
high jerk of a less-smooth trajectory.

Owing to the complexity of the setup, execution anomalies
(e.g. unexpected occlusion, grasp problems) may arise, which
can drastically increase the values of the variables of interest.
Taking these considerations in account and considering the
possible impact on the statistical analysis, it was decided to

6]

eliminate, from each visualization modality, the participants
with the maximum and minimum performance scores, result-
ing in 20 participants per visualization modality.

An additional analysis was performed to account for the
effects of training and personal experience, which are known
to strongly affect the performance of teleoperation tasks. This
analysis divided the participants into two groups according to
their self-reported experience in AR/VR and video games. The
reported average hours spent weekly interacting with AR/VR
environment and playing video games were used to decide
whether to insert them into the expert group (at least two hours
weekly) or non-expert group (less than two hours weekly).
For each condition, the participants with the maximum and
minimum scores were removed from the two groups (expert
and non-expert), resulting in 18 participants for each AR
modality.

Each test was considered significant at 95% confidence level
(p < 0.05).

III. RESULTS
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Fig. 5. Results for the variables, relating to task execution without considering
expertise (20 participants per boxplot): (a) Accuracy for different AR feedback
modalities, together with significance results (*p < 0.05, **p < 0.01).
(b) Execution time for different AR feedback modalities, together with the
significance results. Each boxplot depicts the statistics of the 8 participants
for which this information is reliably available: each box represents the 25th
to 75th percentile, the black line in the middle is the median, bars above and
below connected with dashed line represent maximum and minimum values.



IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS

TABLE I
ALL THE MEASURED TIMES (IN SECONDS) AND ERRORS (IN METERS) ARE SHOWED DIVIDED PER PARTICIPANT, FOR EACH MODALITY. TABLE ALSO
REPORTS THE COMPETENCY OF EACH PARTICIPANT, PLUS THE ORDER OF THE TESTED CONDITIONS.

(D ) 3) ) Q)]
ID No AR Manipulation AR Embodiment AR Task AR Full AR Order Expertise
Time Error Time Error Time Error Time Error Time Error
1 56.0 0.0168  40.7 0.0132 32.4 0.0292  40.0 0.0251 37.6  0.0129 12345 None
2 545  0.0369 274 0.0227 118.8  0.0204 147 0.0124 48.1 0.0085 23451 AVR & Games
3 23.6 0.0103 24.8 0.0400 29.9 0.0351 224 0.0513 11.7 0.0206 34512 AVR
4 329 00144 545 0.0166 33.0 0.0243 35.1  0.0057 445 0.0597 45123 None
5 129.4  0.1041 31.7 0.0294 50.6 0.0250 333 0.0416 47.0 0.0232 51234 None
6 104 0.0408 13.1 0.0369 15.8 0.0847 328 0.0277 553 0.0667 54321 Games
7 264  0.0218 70.2 0.0074 333 0.0548 57.0 0.0903 154 0.0190 25134 None
8 125.4  0.0559 91.5 0.0163 43.9 0.0389 28.0 0.0195 28.5 0.0641 13524 AVR
9 81.8 0.0144 63.1 0.0914 39.5 0.0329 67.3 0.0495 323 0.0026 43215 None
10 381 0.0079 98.0 0.0327 44.8 0.0290  72.0 0.0325 309 0.0151 12543 None
11 28.2 0.0263 1379 0.0293 53.0 0.0248 32.7 0.0285 344  0.0136 34251 AVR
12 474  0.0671 23.3 0.0180 20.8 0.0141 31.1  0.0253 247 0.0100 23154 None
13 250 0.0193 369 0.0389 31.8 0.0392 33.0 00175 197 0.0116 32514 Games
14 348 0.0694 16.5 0.0049 16.9 0.0146 163  0.0143 249 0.0285 21534 Games
15 385 0.0220 104 0.0183 25.9 0.0124 302  0.0064 328 0.0129 45132 None
16 32.8 0.0287 31.9 0.0200 32.0 0.0125 40.2  0.0256 249 0.0155 32154 None
17 379 0.0259 204 0.0248 33.8 0.0191 46.2  0.0068 255 0.0193 31245 None
18 309 00162 253 0.0113 60.4 0.0091 572 0.0148 41.1  0.0092 45123 AVR & Games
19 50.4 0.0244 41.6 0.0054 46.9 0.0147 96.1 0.0190 32.0 0.0205 43125 None
20 197 0.0236 275 0.0115 15.8 0.0194 16.1  0.0279 106  0.0051 23154 AVR & Games
21 30.6 0.0872 20.3 0.0134 27.9 0.0504 18.9 0.0239 18.0  0.0257 32154 None
22 207  0.0357 18.0 0.0114 27.6 0.0119 243  0.0236 27.0 0.0110 51432 AVR & Games
* statistical significance although not all possible combinations
1007 x of visualization modalities were tested.
80 ] * ¥
* ¥
60 1 * — B. Task Execution
40 pmmm l . Significant group differences were found in the parameters
: __ : relating to task execution (placement accuracy and execution
201 - - - time) among the five AR feedback modalities, when the anal-
— — ysis is performed on all the 20 participants without accounting
0 . . . . . for expertise. Lilliefors test shows that both Execution Time
No AR  Manip Embod  Target Full AR and Accuracy results are normally distributed. The accuracy

Features Classes

Fig. 6. Results for the smoothness of the participants’ hand trajectory. The
values of the normalized jerk for the different AR feedback modalities together
with the significance results are shown (*p < 0.05,** p < 0.01).

A. Order Effect Analysis

The results show no statistical difference either in com-
pletion time (p = 0.3187) or in accuracy (p = 0.3688)
among different trials. It is, therefore, plausible to assume

obtained during the task execution, with full AR feedback, is
significantly higher (p = 0.0058) than that obtained during the
task execution with no AR feedback, as also that obtained with
the AR features relating to embodiment (p = 0.0344). The
accuracy obtained during the task execution with AR features
relating to manipulation is significantly higher (p = 0.046)
than accuracy with no AR feedback. The time required to
complete the task with full AR feedback is significantly lower
(p = 0.04) than the time required with no AR feedback. The
results are shown in Figure [5] where part (a) shows the results
for accuracy, and part (b) the results for the execution time.
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Fig. 7. The reported effects of different AR classes on (a) the sense of
presence, (b) embodiment and (c) the ease of executing the task. The values
from the questionnaires results (from 1 to 7), together with the significance
results (*p < 0.05, **p < 0.01), are shown here. Each boxplot depicts the
statistics for all the 22 participants.

C. Trajectories Analysis

Significant group differences were found in the participant’s
hand trajectory smoothness values between the AR feedback
modalities. Particularly, the normalized jerk on the x-y plane,
obtained during the task execution with AR features relating
to embodiment is significantly lower (p = 0.002) than the nor-
malized jerk on the x-y plane obtained with no AR feedback,
with AR feedback relating to the task information (p = 0.002),
full AR feedback (p = 0.029). The normalized jerk on the x-y
plane, obtained during task execution with AR features relating
to manipulation is significantly lower (p = 0.027) than the
one on the x-y plane, obtained during the task execution with
no AR feedback or with AR feedback, relating to the task
information (p = 0.009). These statistics, together with the
significance results, are shown in Figure [6]

D. Questionnaires Results

Significant group differences are found in the reported
effects of different AR feedback classes on the participant’s
sense of acting in the remote environment, of embodiment and
on the ease of task execution. Particularly, the AR features
relating to manipulation have a significantly stronger effect
(p = 0.024) on providing the sense of presence in the remote
environment, as compared to that of the task-related AR
feedback. The virtual robot model has a significantly stronger
effect on enhancing the illusion of the embodiment towards
the remote robot, as compared to that of the manipulation-
related features (p = 0.044) or the task-related features (p =
0.02). The manipulation-related features are more effective
than the task-related features in facilitating task execution
(p = 0.0138). These statistics, together with significance
results, are shown in Figure m

E. Expertise Analysis

The partitioning of the 22 participants, based on their
expertise, resulted in 7 expert participants and 15 non-expert
participants in AR/VR and in 7 expert participants and 15 non-
expert participants in Video Games. These two expertise types
have 4 participants in common.

The expertise types were analyzed separately and then com-
pared in terms of expert vs non-expert groups. As discussed in
Section the analysis was performed over 18 participants,
after removing the outliers from both expert and non-expert
sub-groups for every condition.

Figure [8] shows the results of the four groups’ completion
time. Each column is associated with a participant and is
grouped, based on visualization modality and expertise. To
improve visualization, the bars in the chart are sorted group-
wise.

1) AR/VR: The expert group completed the task in sig-
nificantly less time than the non-expert group during the task
execution with no AR feedback (p = 0.05) or with AR features
relating to the task information (p = 0.003). In terms of the
execution time, significant differences are found among the
AR/VR games non-expert groups with different AR feedback
modalities. In particular, the time required to complete the
task with full AR feedback is significantly less than the time
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Fig. 8. Task execution time of the expert and non-expert groups for (a) AR/VR and (b) video games, based on the participants’ partitioning, after removing
the outliers from each group. Each bar is associated with a participant, with 18 participants per condition. Significance of the comparison between experts and
non-experts for each AR condition is shown with black asterisks. Colored asterisks represent statistical significance of the comparison of different conditions,
the expertise group being equal (*p < 0.05, **p < 0.01). The bars were sorted, based on execution time, to improve visualization.

required with no AR feedback (p = 0.008) or with the AR
features, relating to the task information (p = 0.015).

Significant group differences are found, in terms of the
execution time, among the AR/VR expert groups with different
AR feedback modalities. In particular, the time required to
complete the task with the AR features relating to task
information is significantly lower (p = 0.027) than the time
required to complete the task with the AR features relating to
embodiment.

Figure [8fa) shows the results comparing the execution time
between AR/VR experts and non-experts.

2) Video Games: The expert group completed the task in
significantly less time than the time taken by the non-expert
group with no AR feedback (p = 0.007), AR features relating
to manipulation (p = 0.022), or AR features relating to task
information (p = 0.017).

Significant group differences are found in terms of the
execution time, among the video games non-expert groups
with different AR feedback modalities. In particular, the
time required to complete the task with full AR feedback is
significantly less than the time required with no AR feedback
(p = 0.003), AR features related to embodiment (p = 0.02), or
AR features relating to task information (p = 0.017). In terms
of accuracy, no significant group differences are found between
the two groups. Figure [8(b) shows the results, as also their
significance, for comparison of the execution time between
video games experts and non-experts.

IV. DISCUSSIONS AND CONCLUSION

The experiment revealed some differences between the
AR feedback modalities, which possibly answer the research
questions (raised in Section [[I] of this paper). The AR effects
were quantified in terms of placement error of the manipulated

object, task completion time and smoothness of the hand
trajectory.

A. AR Effects

Overall, the participants using the full AR feedback had
significantly improved execution in terms of both placement
error and completion time, as compared to their execution
without AR feedback. According to the participants’ judgment,
the robot model is the most effective AR feature in improving
the illusion of embodiment. Information like the target ob-
ject position, the robot end-effector position or the distance
between the robot end-effector and the target position can
be lost during the execution, due to technological constraints
(i.e. , low resolution, non-optimality of the camera positioning
and view point). According to the experiment’s result, all the
features that focus in compensating this loss tend to lead to a
more skillful and sure execution. The motivation for this result
may depend on the responses connected to the improved sense
of presence and improved sense of embodiment.

Interestingly, the AR features relating to embodiment gave
better execution results with smoother trajectories than the full
AR feedback (Figure [6). This results possibly indicates that
high degree of additional information added to the scene may
lead to an execution that could be more accurate, but it is
uncertain from motion view point. The motivation probably
relies on the fact that the operator could have taken into
account too much information at once, during task execution.

The features delivering information about the task execution
seem to have negligible impact on task performance. More-
over, compared to the manipulation-related features, these
features contributed less to the sense of presence and to task
execution, according to the participants’ judgment. This result
is aligned with the existing literature related to the use of task-
related features, which are usually found to improve the task
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performance [20]. However, the considered scenario did not
regard the teleoperation of a robot. These results may also be
partially influenced by the chosen task, which does not have
a particularly complex or articulated execution. The fact that
execution with task-related features is comparable to execution
without AR features is further strengthened when the results
are evaluated considering the participants’ previous expertise.
Both groups, who are considered experts in AR/VR, as well
as in video games, performed better than their non-expert
counterparts in both no AR and only task related information
modalities. The performance of non-experts under these two
modalities is worse (in terms of completion time) than their
execution performance with full AR feedback. The completion
time of non-experts in AR/VR is higher when they used no
AR information and when they used the full AR feedback
using task-related features compared to the full AR feedback.
The non-experts in video games’ completion time is higher
when they used no AR information than when they used the
full AR feedback; it is similarly higher when they used task-
related features than when they used the full AR feedback.

B. Expertise Effects

Interestingly, the expert gamers completed the task in less
time than the non-expert gamers, even when the AR feedback
relating to manipulation information was available. This result
may be explained by the fact that video gamers are more
proficient at utilizing and relying on synthetic visual cues. This
difference is lost with full AR feedback, which can improve
the non-expert groups’ performance, and thus level out the
difference between experts’ and non-experts’ performances.

Overall, the AR feedback affected the performance of the
expert groups less than the non-expert groups. This finding
is in line with that of Gwilliam et al. [27]]. The difference
between the effects of AR for the expert gamers is not
statistically significant. Instead the difference of completion
time between the conditions with embodiment-related features
and task-related features is statistically significant for AR/VR
experts. This result could be explained by the fact that experts
are more proficient at performing tasks in a virtual scenario. It
is plausible to assume that the experts possess skills relating
to virtual scenarios, such as judging distances and finding
effective strategies of motion. In this regard, AR emerges as
a useful tool to assist the first-time operators and less skilled
operators in executing assembly tasks.

C. Conclusions

Although the performance of teleoperation tasks with com-
plex visual feedback is strongly affected by the operator’s skill
and expertise, additional information delivered with AR seems
to help reduce the gap between the performance of expert and
non-expert operators. Therefore, AR could help in shortening
the learning curve, so that the operators become proficient in
the teleoperation setup and can thus perform better with just
a short familiarization with the system. These results may be
attributed to the increased sense of presence and embodiment,
which benefit from the additional information that can be lost

because of technological constraints, but recovered and deliv-
ered through AR. The practical implication of these results is
that, AR feedback, limited to task specific information, can
be useful in supporting expert operators’ activity, and full AR
feedback in supporting non-expert operators’ activity.

Further studies are necessary to fully assess the effects of
task-related AR features on task performance. Those studies
may require experimental trials with more complex and ar-
ticulated tasks that possibly involve multiple execution steps.
The outcome of the present work would hopefully facilitate
future studies about the effect of AR on the learning curve of
teleoperation tasks.
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APPENDIX

This is the list of the pre-experimental questions. Where not
stated we used a Likert-type scale at 7 levels.

1) Rate your familiarity with VR/AR

2) Rate your familiarity with video games

3) Rate your familiarity with robotic systems

4) Rate your familiarity with robotics teleoperation

5) Rate the time you spend weekly using VR/AR applica-
tions (mobile, games, ...)

6) Rate the time you spend weekly playing video games -
three results as question 5

and then the post experimental questions:

1) Rate your sense of acting in the remote environment, on
the following scale from 1 to 7, where 7 represents your
normal experience of acting in the environment.

2) Rate the effect of Augmented Reality (AR) on your
sense of acting in the remote environment

3) Rate the effect of the following visual virtual fixtures
on your sense of acting in the remote environment:
Manipulation (Distance represented by the 3D cylinder,
Distance, Gripper Closure, Object Mesh), Embodiment
(Robot Model), Task (Mesh of target pose)

4) I had a sense of being the robot

5) Rate the effect of AR on your sense of being the robot

6) Rate the effect of the following visual virtual fixtures on
your sense of being the robot - as in question 3

7) Rate the effect of AR on facilitating the task execution
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