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Abstract

The Strength-Dexterity (SD) test measures the ability of the pulps of the thumb and index

finger to compress a compliant and slender spring prone to buckling at low forces (<3N). We

know that factors such as aging and neurodegenerative conditions bring deteriorating physi-

ological changes (e.g., at the level of motor cortex, cerebellum, and basal ganglia), which

lead to an overall loss of dexterous ability. However, little is known about how these changes

reflect upon the dynamics of the underlying biological system. The spring-hand system

exhibits nonlinear dynamical behavior and here we characterize the dynamical behavior of

the phase portraits using attractor reconstruction. Thirty participants performed the SD test:

10 young adults, 10 older adults, and 10 older adults with Parkinson’s disease (PD). We

used delayed embedding of the applied force to reconstruct its attractor. We characterized

the distribution of points of the phase portraits by their density (number of distant points and

interquartile range) and geometric features (trajectory length and size). We find phase por-

traits from older adults exhibit more distant points (p = 0.028) than young adults and partici-

pants with PD have larger interquartile ranges (p = 0.001), trajectory lengths (p = 0.005),

and size (p = 0.003) than their healthy counterparts. The increased size of the phase por-

traits with healthy aging suggests a change in the dynamical properties of the system, which

may represent a weakening of the neural control strategy. In contrast, the distortion of the

attractor in PD suggests a fundamental change in the underlying biological system, and dis-

ruption of the neural control strategy. This ability to detect differences in the biological mech-

anisms of dexterity in healthy and pathological aging provides a simple means to assess

their disruption in neurodegenerative conditions and justifies further studies to understand

the link with the physiological changes.
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Introduction

The ability to dynamically regulate the direction of fingertip force vectors of low magnitudes

(e.g., dexterity), is essential for everyday activities and greatly influences quality of life [1, 2].

Sudden or gradual losses of dexterity and/or impaired neural control of manipulation can lead

to difficulties in performing activities of daily living (ADLs) [3]. For example, aging and some

clinical conditions (i.e., Parkinson’s disease, PD) result in progressive losses of dexterity [4, 5].

Thus, assessing and quantifying one’s ability to dynamically regulate fingertip forces becomes

particularly important to study healthy aging and clinical conditions. As a result, numerous

tests of fingertip force production are used to assess hand function [6, 7]. In particular, the

Strength-Dexterity (SD) paradigm quantifies the ability to use fingertip forces to compress and

hold a slender spring prone to buckling [1] (Fig 1A and 1B). The spring becomes increasingly

unstable when compressed, and the average maximal level of sustained compression a person

can achieve has been used as a quantitative metric of the sensorimotor ability for dexterous

manipulation [1, 2]—and even for dexterous foot-ground interactions when compressing a

larger spring with the leg [8]. This discrete metric has successfully quantified the effects of

development, aging [4, 8, 9] and clinical conditions [5, 8, 10, 11] on manipulation ability.

Although prior work has used statistical and spectral analyses of the average forces at the edge

of instability, a formal dynamical analysis of the time-varying fingertip forces that achieve the

maximal sustained compression should be more informative of the biological dynamical sys-

tem underlying dexterous manipulation, its healthy properties and as a consequence how its

behavior is affected by diseased states. In particular, one study has concluded that—when at

the edge of instability—the combined system of the fingers, spring and neuromuscular system

behaves as a nonlinear dynamical system in the vicinity of a subcritical pitchfork bifurcation

[12]. For this reason, a nonlinear analysis of the time history of forces may be able to reveal the

properties of the dynamical “attractor”, which standard linear techniques cannot do [13].

Fig 1. The SD test. The SD test (A) consists of compressing a compliant, slender spring prone to buckling, and once the maximal level of

compression has been reached, it is sustained for at least 3s. The pulps of the thumb and index finger press the end caps of the spring

and a miniature load cell is positioned under the index and thumb fingers. (B). Three filtered force traces for a young adult (top), an older

adult (center), and an older adult with PD (bottom) are shown.

doi:10.1371/journal.pone.0172025.g001
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Unfortunately, the few seconds that subjects can reliably remain at the edge of instability pro-

duce short time series that are not well-suited to many nonlinear dynamical measures (i.e,

maximal Lyapunov Exponent, Correlation Dimension) that require long time series [14, 15].

Attractor reconstruction, however, has been successfully used as a tool to characterize the

variability and stability of dynamic biological systems [16]. For example, attractor reconstruc-

tion can characterize the level of anesthesia [17] and classify epileptic seizures [18] when

applied to electroencephalographic signals, assess heart function when applied to electrocar-

diograms [19], and characterize neuromuscular function when applied to the variability of

static forces [20–23]. This technique is informative since the reconstructed attractor is pre-

sumed to be topologically equivalent to the original non-observable attractor [24]. If the recon-

structed phase space (the space in which all possible states of a system are represented, with

each possible state corresponding to one unique point in the phase space) shows systematic,

condition-related changes in its topology, then the underlying dynamics of the system are also

changing [25].

Here we focus on attractor reconstruction as a geometric characterization of the effects of

age and PD on the ability to stabilize an unstable object with the fingertips. We use the time

histories of fingertip forces to reconstruct the attractors that characterize the hand-spring-neu-

ral control system of manipulation at the edge of instability—and to quantify differences in the

temporal and geometric structure of the attractors among young adults, older adults with PD,

and age-matched healthy older adults. The quantified differences represent the consequence of

the changes at the physiological level, however, further investigation will be necessary to

understand the link between our results and the physiology.

Materials and methods

Definitions and motivation

The nonlinear analysis detailed in this paper is based on the theory of nonlinear dynamical

systems, where the time evolution of a system is defined in a phase space. In a nonlinear sys-

tem that is purely deterministic, all its future states are fixed once the present state is fixed.

But it can be chaotic if small differences in initial conditions yield widely diverging out-

comes, rendering long-term prediction impossible. Thus, generally speaking, nonlinear sys-

tems may exhibit deterministic chaos. To study such systems, we can usually assume that the

stochastic component is small and does not change the fundamental nonlinear properties of

the system. We can then define a vector space, namely a state space or phase space for the sys-

tem. Every point in the state space specifies a state of the system and vice versa. This property

allows us to study the dynamics of the system through the study of the points it visits in state

space. Note that, except for dynamical models with defined mathematical equations of

motion, there is usually no unique choice for the phase space of experimental systems. In the

case of nondeterministic systems, we can still consider the concept of state space, but usually

by only taking into account a set of states and transition rules between them [24]. For deter-

ministic systems, we can usually find their finite m-dimensional vector space, where the state

is defined by a vector x 2 <m. If the system is discrete, its dynamics are described by an m-

dimensional map xn+1 = F(xn). If the system is continuous, its dynamics are defined by a set

of m first-order differential equations, d
dt xðtÞ ¼ f ðxðtÞÞ.

A sequence of points that represent a solution to the above equation given some initial con-

ditions is called a trajectory of the dynamical system. A geometric representation of the trajec-

tories of the system in the phase space is called a phase portrait. For a system with bounded

solutions and dissipative tendencies (meaning that on average the volume of the phase space

containing the initial conditions tends to contract with the evolution of the system state), a set

Attractor reconstruction and neural control strategies
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of initial conditions will evolve towards (i.e., be attracted to) a certain subset of the phase

space. This subset is defined an attractor for the system, and it is invariant under the system’s

dynamical evolution. Examples of attractors are fixed points and limit cycles [24]. In the case

of deterministically chaotic systems, attractors may exhibit very complicated geometrical

structures, for this reason they are usually called strange attractors [26]. The properties of the

attractor, such as type, shape, location, and size, are dependent upon the values of the parame-

ters of the dynamic system, and for this reason the investigation of the phase portraits (i.e what

attractor exists and what are its properties) can shed light on the nature of underlying dynam-

ical system [27]—and in this case the biological controller that produces the stabilization of the

spring.

Participant demographics

We re-analyzed the fingertip forces that ten young adults (6F, 4M, mean±SD, 24.1±1.2 yrs),

ten healthy older adults (5F, 5M, 65.2±6.7 yrs), and ten older adults with PD (6F, 4M, 68.1±8.9

yrs) used to perform the SD test, as reported in prior studies [5, 8]. All participants gave their

written, informed consent prior to participation and the Institutional Review Board at the Uni-

versity of Southern California (Los Angeles, CA, USA) approved the study protocol. The indi-

vidual in this manuscript has given written informed consent (as outlined in PLOS consent

form) to publish these case details.

Data collection

The published SD test consists of a 3.96 cm spring outfitted with a miniature force sensor posi-

tioned under the index finger (Measurement Specialties, Hampton, VA). Subjects were asked

to compress the spring with only their thumb and index finger to the point of maximal insta-

bility they can sustain (i.e., beyond which they feel it would slip out of their fingertips) and

maintain a constant level of compression [9]. Data acquisition hardware (National Instru-

ments, Austin, TX) sampled the conditioned signal of the sensors at 2000 Hz and we used cus-

tom MATLAB (v2015b, Mathworks, Natick, MA) software to process and analyze the data.

We used the same hold phases, defined as the periods of maximal sustained compression with

the fingers (10 for each participant) reported previously [5, 8]. In our prior work, we analyzed

the three hold phases with the highest mean compression forces held stable for at least three

seconds. However, for this nonlinear analysis, instead of calculating the average maximal sus-

tained force, its dispersion, or frequency content, we used the force time histories during all

ten hold phases. The force traces from index and thumb finger were averaged, downsampled

to 400 Hz and bandpass-filtered (Butterworth, 3–30 Hz) to focus our analysis on the force vari-

ability related to fast corrections and reflexive actions, but which unavoidably also includes

physiological and pathological tremor [5, 22, 23, 28].

Attractor reconstruction

Real-world dynamical systems are generally too complex to directly observe the underlying

attractors. Typically, not all the variables involved are observable and, moreover, sampling and

quantization effects represent a breach of the differentiability whose validity is also substan-

tially weakened in the presence of unavoidable experimental, measurement or physiological

noise. For these reasons, methods have been developed to reconstruct a mapping function

between the one-dimensional observed variable (the time series of force) and its attractor (if it

exists). The goal is to obtain a phase portrait which preserves the topological and dynamical

properties of the original system [29] while revealing some properties of the underlying

attractor. One such tool for attractor reconstruction is the delayed embedding theorem [29],

Attractor reconstruction and neural control strategies
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stating that the vector sequence,

YðiÞ ¼ yi; yiþt; yiþ2t; . . . ; yiþðm� 1Þt

� �
ð1Þ

provides a reconstructed attractor with the same properties of the original system; where yi is

the value of the time series at time i, tau (τ) is the embedding delay, and m is the embedding

dimension. The underlying idea is that the variables in a deterministic dynamical system are

generically connected, influencing one another. Every subsequent point of a given measure-

ment yi is the result of a combination of the influences from all other variables of the system up

to a certain value of lag, after which the memory of the previous state of the system is lost. For

this reason, it can be treated as a substitute second system variable (or heuristic state variable),

which carries information about the influence of all other variables during the time interval τ.

By the same reasoning, all the other substitute delayed coordinates can be introduced by

obtaining the m-dimensional phase portrait (in the m-dimensional heuristic state space), pro-

vided an appropriately large enough m. It is crucial to state that the information carried by the

heuristic variables is identical to that carried by the original (but hidden) system variables with

the exception that properties associated with the system’s dynamics have no particular physical

meaning [30].

We emphasize that the embedding parameters τ and m must be properly chosen. The

embedding delay τ must be large enough so that the information gained from measuring the

value of yi + y(i + τ) is significantly different from the information already known from the

value of yi. This will allow the proper “unfolding” of the attractor in the phase space. Con-

versely, τ should not be larger than the typical time interval in which the system loses memory

of its prior state. Fig 2 shows an example of the influence of the choice of τ in the reconstruc-

tion of the well known Lorenz Attractor. When τ is chosen properly (top right), the recon-

struction “unfolds” correctly off the main diagonal. If τ is too small (bottom left), the m
coordinates of each attractor point are strongly correlated and the embedded dynamics lie in

the proximity of the main diagonal of the phase space. Conversely, if τ is too large (bottom

right), the reconstructed phase space consists of uncorrelated points, resulting in a randomly

shaped attractor.

In order to determine the appropriate τ, statistics that measure the independence of sepa-

rated points in the time series are often employed. For example, the first zero crossing thresh-

old of the autocorrelation function [24] yields the smallest value that maximizes the linear

independence of the coordinates of the embedding vector. Other thresholds have also been

proposed for the autocorrelation, such as 1/e or its 5% value [17]. Another approach is to uti-

lize the first minimum of the mutual information function [19], since it adds the largest

amount of known data from the previous point of the time series, without completely losing

the correlation between the points themselves. Fig 3 shows examples of different thresholds for

a force trace from a healthy older adult. To find a conservative estimate for τ, we used all three

methods to calculate the embedding delay for all ninety hold phases, and then created histo-

grams of the values. The mode of the distributions, thus the value that appears most often for

the data in all the three methods, was chosen as the embedding delay.

The embedding dimension, m, should be the lowest dimension that allows the dynamics of

the attractor to properly topologically unfold. When the embedding dimension is too small,

there is a loss of geometrical information much like observing the 2-D shadow of a 3-D object

rather than the object itself. There is a “flattening” of the shape and points that are far from

each other in the 3-D object are projected closer to each other in the lower dimension. This

geometrical property can be exploited to compute the proper embedding dimension using the

false nearest neighbors method [31].

Attractor reconstruction and neural control strategies
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In this method, the data are first embedded in a chosen dimension m�, each point’s near

neighbors are computed. The embedding dimension is increased (m� + 1) and near-neighbor

are re-calculated. If some neighbor in m� dimensions is false, that is, it is no longer a neighbor

in m� + 1 dimensions, this is an indication that the dynamics were not properly unfolded. For-

mally, for a given m, for every point pi in the m-dimensional space, a near neighbor pj is taken

(pj : kpi − pjk2 < ε) and the normalized distance in the m+1-dimensional space is computed as:

Ri ¼
jyiþmt � yjþmtj

k pi � pjk2

: ð2Þ

If the distance Ri is smaller than a chosen threshold Rth, the points have a false nearest

neighbor. When the embedding dimension m is chosen high enough, the ratio of the false

neighbors is zero or sufficiently small. Usually the threshold distance is chosen such that 0<

Rth< 10 and 0< ε< 0.1σ, where σ is the standard deviation of the time series.

Fig 2. Effects of the embedding delay on the reconstructed attractor. The exact phase portrait of the dual attractor (top left) and a

correct reconstruction (top right) are shown. When τ is chosen too small (bottom left) the reconstructed attractor appears compressed

without well-evolved folding regions. When chosen too large (bottom right), the resulting attractor shows trajectories folding and wrapping

around very frequently, with the resulting fragmentation of the dual attractor and the introduction of a seemingly stochastic nature.

doi:10.1371/journal.pone.0172025.g002
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Fig 4 shows an example of the influence of the choice of m in the reconstruction of the

Lorenz Attractor. In blue the original 3-D attractor is shown, together with the reconstructed

attractor with m = 2 in red. Two points (cyan and magenta) which are far apart in the original

attractor, may lay closer to each other in a lower dimensional space, due to the effects of

projection.

Note that this approach allows the original and the reconstructed attractor to share the

same topology and the same geometrical form (Fig 2), thus justifying the investigation of the

spatial properties of the reconstructed attractor.

Spatial features of the phase portrait

Once we reconstructed the attractors by creating the phase portraits with the appropriate

embedding dimension, m0, we used several geometric features to characterize their spatial

properties [17] (i.e., a means to quantify their topology and geometrical form). Each feature

provides a quantitative index of the geometric and distribution properties of the reconstructed

attractors that speaks to characterizing information of density, perimeter, area, and volume, or

their combination.

The first feature we used is the Length of the Phase Trajectory (TL) defined as,

TL ¼
XN

i¼1

k Yiþ1 � Yi k ð3Þ

where Y is the reconstructed phase portrait and N is the number of points that the time series

contains (see Eq 1) [17]. With this feature the distance between every consecutive (m − 1)τ-

dimensional point is considered. TL is an indirect measure of the level of stochasticity of the

state space. In fact, as a signal becomes more chaotic, two initially close points in the state

space move further from each other and consequently have a longer TL.

A second group of features was chosen to measure the spatial distribution of the points in

the attractor and, in particular, to quantify the spatial dispersion from the point in the (m − 1)

τ-dimensional space that is the inferred centroid of the attractor. From a control point of view,

trajectories in the phase space characterized by points far from the attractor centroid can be

the symptom of a weaker dynamical control action, which is less efficient at bringing the sys-

tem state toward the attractor [32]

Fig 3. Examples of the choice of the embedding delay τ. The autocorrelation function (A, B) and mutual information (C) up to a lag of

500 are shown for a force trace from one of the collected hold phases (older adult). The insets show the zoom of the point where the 5%

threshold is crossed by the autocorrelation (A), where the first minimum of the mutual information is (B) and where the 1/e threshold is

crossed by the autocorrelation (C).

doi:10.1371/journal.pone.0172025.g003
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The first spatial distribution feature we used is the Number of Distant Points (DP) [17]. DP

is computed by counting the number of points whose distance is higher than three standard

deviations (3σ) from the attractor centroid, according to a chosen metric. Taking into account

the typical ellipsoid shape characterizing the reconstructed attractors, then the Mahalanobis

distance defined as,

dM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x � mð Þ
T
S� 1 x � mð Þ

q
ð4Þ

can be chosen as a distance metric because it takes into account the dispersion of points and

correlation between variables, being S and μ the signal variance and mean, respectively.

The second spatial distribution feature we considered is the Interquartile Range of the
Euclidean Distance from the Centroid (IQR). In general, the interquartile range measures the

statistical dispersion of the distribution of a set of points. In particular, it defines the difference

between the 25th and 75th percentile of the distribution of points. Thus it describes the middle

50% of observations. We applied the interquartile range to the distribution of the Euclidean

distance of the points belonging to the phase space trajectories from the trajectory centroid. If

the interquartile range of the distances is large, it means that the middle 50% of observations

are spaced wide apart. When computing IQR for the distance of phase portrait points from the

centroid, it provides a measurement of how scattered the points are. It is to be noted that while

Fig 4. Effects of the embedding dimension on the reconstructed attractor. The exact phase portrait of the dual attractor (blue), with

m = 3 and a reconstruction with m = 2 (red) are shown. When m is too small points in the phase space which are far apart in the correct

dimension may be closer in a smaller embedding dimension, thus the reconstructed attractor shows partially developed dynamics.

doi:10.1371/journal.pone.0172025.g004
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the IQR captures the spread of the distribution of the 50% of the points of the phase portrait,

while the DP captures the number of samples further than 3σ from the distribution mean.

Finally, to assess the overall geometry of the reconstructed attractor, we computed its mini-

mum convex hull and we used the Sum of the Length of the Edges of the convex hull (SE) and its

Volume (V) as its representative features [17]. The former is an index of the perimeter or the

area of the attractor, while the latter quantifies the spatial spread of the points forming the

phase portrait. We note that one limitation of comparing the features of the convex hulls (CH)

is that they must be in the same dimension. Convex hulls are a common way to “generalize”

the shape of an attractor and extract useful information, which can be interpreted more easily

and used for comparison [33].

Fig 5 illustrates how the proposed nonlinear spatial characterization of the phase space is

more informative of the underlying dynamics, compared to traditional linear measures of vari-

ability. To demonstrate, we used three nonlinear maps to generate four time series, and to

compute the respective convex hull (in red), trajectory length (TL) and the number of distant

points (DP) associated with their reconstructed attractors (in blue). The four time series were

all characterized by the same standard deviation (σ = 1.6), root mean square (RMS)

(RMS = 1.6) and mean values (μ = 0.3), making it impossible to distinguish them with those

linear measures. However, the nonlinear spatial characterization was sensitive to the differ-

ences in their dynamics reflecting—for example—an increasing level of stochasticity (i.e.

increasing values of length of the phase trajectory, TL).

Fig 5. Linear and nonlinear measures of variability. Reconstructed attractors (in blue) in a 2-D embedding space obtained from four

time series from three different nonlinear maps. Despite generating time series with the same mean (μ = 0.3), standard deviation (σ = 1.6)

and RMS (RMS = 1.6), distinct differences can be highlighted through the spatial characterization of the reconstructed attractor. The

shown convex hulls (CH) in red and values for length of the phase trajectory (TL), number of distant points (DP) and interquartile range of

the Euclidean distance from the centroid (IQR) reflect the differences in the system dynamics. For example the more chaotic the signal is,

the more the reconstructed phase portrait shows stochastic traits with an associated higher level of TL. [17].

doi:10.1371/journal.pone.0172025.g005
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Ellipsoid fitting

In general, when we consider the phase portraits of biological signals, it can be seen that the

points exhibit elliptical shapes [34], where the central area of the ellipse is dense of points,

while the peripheral area results more blurred with the possible presence of outliers [17]. The

convex hull, being by definition a set of points containing all the fitted points, is sensitive to

the presence of outliers and in general to distributions of points with long tails, whose presence

leads to a bigger polyhedron. In order to gain a better understanding of the differences among

the shapes of the phase portraits for each population, we fit a 3-D ellipsoid to the set of points

belonging to each phase space trajectory. For the analysis of the point distribution, an ellipsoid

can be interpreted as the equidensity contours of an m-dimensional multivariate normal distri-

bution (MVN) centered on the centroid of the points. The eigenvectors of the covariance

matrix of the points define the orientation of the ellipsoid principal axes, which are also the

directions of the principal components of the data, while the eigenvalues define the squared

relative lengths of the principal axes and the proportion of variance explained by that compo-

nent. For this reason ellipsoid fitting is perfectly equivalent to performing principal compo-

nents analysis, but we prefer this geometrical interpretation since it is more directly related to

the spatial properties of the points distribution. Compared to the convex hull, the ellipsoid fit-

ting technique is robust to the presence of outliers and long tails of points and is more infor-

mative about the direction and the level of spread of the data. We compared the lengths of the

principal axes of the ellipsoids for the three populations.

We next computed the approximated Sphericity (C) of the ellipsoids for the medians of the

axes to assess the differences in the ellipsoid axes among groups. Sphericity measures how

spherical an object, higher values indicate a more spherical shape, conversely lower values

indicate a less spherical shape. When computed for ellipsoidal objects C is calculated as,

C ¼
p

1
3ð6VÞ

2
3

A
ð5Þ

where V is the volume and A is the area of the object. In the case of an ellipsoid V ¼ 4

3
pa1a2a3

and in the case of a scalene ellipsoid the area is approximated as A ¼ 4p
ap

1
ap

2
þap

1
ap

3
þap

2
ap

3

3

� �1
p

where

p = 1.6 and a1, a2 and a3 are the semi-principal axes.

The spatial and geometric characterization of the phase space can be linked to the efficacy

and the efficiency of the stabilizing neural control action during the SD test. To understand

the relationship between the stabilizing action and the topology of the phase portrait, it can be

useful to utilize as an example the task of stabilizing a buckling column. This simple system

has three fixed points, the saddle at the origin of the phase space, which is unstable and two sta-

ble fixed points, which represent the two possible buckled states. Under the action of an exter-

nal controller, the column will buckle towards one of the two stable states. What we see when

we reconstruct the phase portrait is the “equivalent” stable attractor in which the system has

been stabilized during that particular trial. Under a control action which is perfect, the column,

and in the same way the spring of the SD test, will reach the stable condition. In the case in

which the controller is not able to bring the system state to the stable fixed point, the state tra-

jectories will reach a neighborhood of the fixed point. A reduced control action results in a

larger neighborhood. Moreover, the dimension of the phase portrait in the phase space will

give a quantification of the efficiency of the controller in bringing the state towards the stable

fixed point. We must add that if we compare the same physiological system, in different states

(e.g., healthy versus affected by a neurological condition) it is not possible to infer if the

Attractor reconstruction and neural control strategies
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differences in the phase portrait are due to a different control action or a different, less control-

lable “plant” or their combination.

Data and statistical analyses

We used MATLAB and TISEAN (v2.1.0, TISEAN, Frankfurt, Germany) to reconstruct the

attractors. We used a single factor analysis of variance (ANOVA, using MATLAB) and

repeated measures (number of trials) to compare the attractor features across populations with

significance set at p� 0.05. In order to assess the healthy aging effects we compared younger

adults with older adults and to assess the effect of PD, we compared healthy older adults with

older adults diagnosed with PD. Finally, to assess the combined effects of aging and clinical

condition, we compared younger adults with older adults diagnosed with PD.

Results

Reconstructed attractors

We computed the optimal embedding delay τ and embedding dimension m for all ninety hold

phases. We found conservative values to be τ = 14 and m = 3. Fig 6 shows the histograms

obtained for the choice of the optimal embedding delay τ.

Fig 7B shows the comparison between the resulting τ values among the three populations.

Fig 7A shows the fraction of false nearest neighbors for the three populations, as a function of

the embedding dimension. For m> 3 the number of false nearest neighbors drops below 1%

for all the populations.

Fig 8 shows the reconstructed attractors for three representative subjects each one belong-

ing to a different population. In all we analyzed 90 hold phases (3 × 30) by plotting the com-

pression force recorded at the index finger at each time point, Fk, against two of its delayed

versions, F(k+τ) and F(k+2τ). That is, a 3-D plot, or an embedding dimension, m0, of three.

Attractor features

The features detailed in the Methods are computed from the reconstructed phase portraits. Fig

9 shows the minimal convex hull encasing the phase portrait for a representative participant

from each population. The results of the statistical analyses are reported in Table 1. We report

significant effects when comparing healthy older adults and older adults affected by PD in TL

(p = 0.0046), SE (p = 0.0035), and IQR (p = 0.0013). Only DP (p = 0.028) showed a statistically

Fig 6. The histograms for the choice of τ. The histograms for all the populations obtained using the three different approaches for

choosing the optimal embedding delay τ. The histogram for the 1/e threshold of the autocorrelation function (A), for the first minimum of

the mutual information (B) and for the 5% threshold of the autocorrelation function (C).

doi:10.1371/journal.pone.0172025.g006
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significant difference when comparing young healthy adults with older healthy adults. When

considering the comparison between young healthy adults and older adults affected by PD, we

found statistically significant effects for TL (p< 0.001), SE (p< 0.001), DP (p = 0.047), and

IQR (p< 0.001). The comparisons between the geometric features for all groups are shown in

Fig 10. For graphical reasons every feature was normalized among groups to lay in the [0, 1]

range.

Ellipsoid fitting

Representative ellipsoids of each population are shown in Fig 11. The comparison among the

ellipsoids axes for each population is shown in Fig 12A. Comparing healthy young adults with

healthy older adults we found only near significant differences in the principal axes of the ellip-

soids (p = 0.062), the effects of PD were found to significantly affect the dimensions of the all

three principal axes of the ellipsoids compared to healthy older and younger adults, respec-

tively (first axis: p = 0.006 and p< 0.001; second axis: p = 0.006 and p< 0.001; third axis:

p = 0.001 and p< 0.001).

Fig 7. The choice of the optimal embedding dimension and delay. The fraction of the false nearest for all the three

populations as a function of the optimal embedding dimension (A). The number of false nearest neighbors drops below 1% for all

the three populations when m is chosen greater or to three. The comparison between the values of τ obtained with all the three

approaches (1/e and 5% thresholds of the autocorrelation function and first minimum of the mutual information) for the three

populations (B). Median, first and third quartiles are shown, whiskers show the 1.4 interquartile range values.

doi:10.1371/journal.pone.0172025.g007

Fig 8. The reconstructed attractors. Reconstructed Phase Portrait (PP) for a young adult (A), an older adult (B) and an older adult with PD (C).

doi:10.1371/journal.pone.0172025.g008
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The comparison among the sphericities for all three populations is shown in Fig 12B. While

we do not report statistically significant age effects (p = 0.988) or PD effects (p = 0.062) on the

sphericity of the phase portraits, we find a significant interaction between age and PD

(p = 0.045).

Phase portrait point variability

Since we found significant differences in the IQR value, which is related to the shape of the

points distribution, we performed a qualitative analysis inspecting visually the spatial distribu-

tion of the phase space points. Fig 13 shows a comparison of the spatial distributions of points

of representative phase portraits from all three populations with histograms of density of

points (i.e., probability distributions) for each projection of the phase portraits. The discrete

probability mass of the attractor can be estimated using histograms. The space is divided into

bins and the occurrence count of points in every bin, divided by the total number of points,

provides an estimation of the posterior probability in each bin. Non-uniformly spaced bins are

recommended when the distributions of points in the reconstructed phase portraits are non-

uniform [35]. The application of uniform bins would lead to an occurrence count that depends

on how the phase trajectory crosses the intercepts of the bin. This issue is eliminated using

non-uniform bins, where each dimension is divided into ten partitions such that each partition

contains a fixed number of points. This requires a two-step process. First, a set of intercepts is

computed along each dimension such that the dimension the histogram formed by the inter-

cepts is uniform. Second, the higher-dimensional bins are formed as hypercubes whose

Fig 9. The minimal convex hulls. Minimal Convex Hulls embedding the reconstructed attractors for a young adult (left), an older adult (center) and an

older adult with PD (right).

doi:10.1371/journal.pone.0172025.g009

Table 1. ANOVA results among groups. * indicates significance of 0.05, ** indicates significance of 0.01, and *** indicates significance of 0.001.

Features Age Neurologic condition Age/Neurologic condition

TL p = 0.085 p = 0.0046* p < 0.001***

SE p = 0.083 p = 0.0035** p < 0.001***

V p = 0.19 p = 0.063 p = 0.051

DP p = 0.028* p = 0.87 p = 0.047*

IQR p = 0.13 p = 0.0013** p < 0.001***

Statistical analysis of the spatial features compared among groups. Trajectory Length (TL), Sum of the Length of the Edges of the minimal convex hull (SE),

Volume of the minimal convex hull (V), Number of Distant Points (DP), and Interquartile Range of the Euclidean Distances from the centroid (IQR).

doi:10.1371/journal.pone.0172025.t001
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boundaries are formed by the intercepts determined in the first step. The procedure is repeated

for the all two-dimensional planes (namely X − Y, Y − Z and Z − X).

Discussion

We show that the moment-to-moment dynamics of fingertip forces during spring compres-

sion at the edge of instability reveals differences in the latent attractors. This suggests the ability

to detect differences in the underlying neural control strategies—and not just differences in

force or force variability—across age and health conditions. This goes beyond prior work

focused on the statistical and spectral properties of force variability at the edge of instability [4,

5, 8]. These new findings have clinical impact because they may provide a simple means to

quantify changes in the nature sensorimotor control for dexterous manipulation with age and

the progression of PD. As such they could be used as a quantitative outcome measure for dis-

ease presence, progression and treatment in PD and other neurodegenerative conditions.

Fig 10. Normalized features. The comparison of the normalized features for the three populations is shown at the bottom. Statistical

significance (p < 0.05) is indicated with an *. Median, first and third quartiles are shown, whiskers show the 1.4 interquartile range values.

doi:10.1371/journal.pone.0172025.g010
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There are, of course, limitations to the use of attractor reconstruction for biological systems,

but we feel that those do not challenge the central finding that there were distinctly different

effects of aging and PD on the neural control of dexterous manipulation. Methodologically,

attractor reconstruction is an appropriate approach because we have reported that the time

histories of force during spring compression at the edge of instability reveal features of a bifur-

cating nonlinear dynamical system [2]. So long as we assume that differences in performance

across subject conditions (young vs. elderly vs. elderly with PD) were not large enough to

change τ (the embedding delay) or m0 (the embedding dimension), then we are reasonably

able to compare attractors among them. This assumption is supported by the fact that our sep-

arate estimate of these two parameters in each population did not differ.

Attractor reconstructions as a means to characterize the neuromuscular

control of manipulation

The central tenet of this work is that the phase portrait trajectories of fingertip forces—as

quantified by their reconstructed attractors—are informative of neuromuscular control to

Fig 11. The fitted ellipsoids. Ellipsoids fitted to reconstructed attractors (red), for a young adult (A), an older adult (B) and an older adult

with PD (C).

doi:10.1371/journal.pone.0172025.g011

Fig 12. Ellipsoids axes and sphericity comparisons. Comparison between the axes of the ellipsoids fitted to the phase space points

(A). Median, first and third quartiles are shown, whiskers show the 1.4 interquartile range values. The ellipsoid of the healthy young and

older adult populations are more spherical and significantly smaller than the ellipsoid fitted to the minimal convex hulls of participants

diagnosed with PD. The comparison of the sphericity for the three populations (B). Statistical significance (p < 0.05) is indicated with an *.

doi:10.1371/journal.pone.0172025.g012
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stabilize the unstable spring-hand system. As discussed in, for example [36, 37], there are

strong relations among the various notions of attractors and stability for dynamical systems.

Therefore, detecting an attractor in the phase portrait of our manipulation task at the edge of

instability—as our results show—is indicative of a stabilizing action by the neuro-musculo-

skeletal system. We have published neurophysiological and brain-imaging evidence that the

stabilizing control action we see during the compression of slender springs prone to buckling

has a neural component [2, 5, 8, 9, 38, 39]—in addition to some contributions by muscle prop-

erties [40]. But our quantification of the dynamics of fingertip forces at the edge of instability

has only gone as far as reporting that the stability of the attractor resembles that of a subcritical

pitchfork bifurcation [12]. Those multiple prior findings motivated this work, where we now

find that both aging and PD affect the nature of the attractor, and therefore the underlying

neural control strategies for dexterous manipulation.

Effects of healthy aging

As shown in Table 1, we find that the phase portraits of older adults demonstrate a loosening or

weakening of the strength of the attractor (and thus suggest a degenerative trend in neural con-

trol strategy) compared to their younger counterparts. First, the number of distant points, DP,

is significantly greater in older adults (p = 0.028), which hints at a weaker capability of the con-

trol action to reach the attractor (Table 1, Fig 10). A weaker control action will produce trajecto-

ries that cover a larger subset of the state space. This trend is also present in the other geometric

features considered in this analysis, albeit not to a statistically significant level. A point of clarifi-

cation is needed when interpreting these results as evidence of a “weaker” control action in

older adults. One can also argue that a phase portrait that covers a larger subset of the phase

space could be considered a stronger attractor because it is able to pull in points that are further

from its center of attraction. It is here where the concept of density of the phase portrait can

become critical. At first approximation, a denser phase portrait can be interpreted as a stronger

control because the probability that the trajectories remain close to the attractor is higher. We

therefore compared the distribution of points in the phase portraits of healthy younger and

older adults, and found greater kurtosis (i.e., peakedness of the distribution, or a stronger

mode) in the younger adults as shown in Fig 13. The larger phase portraits in the elderly are

also more scattered and show more variability in their point distribution. Thus, this is an indi-

cator of a weakening of their capability to drive the system state toward the attractors fixed

point, despite the fact that sometimes larger phase portraits can represent stronger attractors.

Fig 13. Examples of phase space points distributions. Examples of the discrete probability functions for the phase portrait of a young adult (A), an

older adult (B) and an older adult with PD (C).

doi:10.1371/journal.pone.0172025.g013
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In fact, these results are in agreement with prior work demonstrating age-related

impairment in dynamic compensatory tracking tasks [41, 42], which takes the form of reduced

efficiency of corrective motion without an increase in response latency [43]. In [43], we con-

cluded that the age-related deficits in dynamic compensatory tasks are a functional adaptation

to increased endogenous noise. The reduced efficiency of corrective actions and increased sto-

chasticity we see here are consistent with the response of a controller subjected to increased

endogenous noise in healthy aging—and likely exacerbated by the presence of PD (see below).

Effects of neurological condition

Table 1 reports strong differences between older adults with and without PD. We readily

acknowledge that it is not necessarily surprising that older adults with PD, by virtue of having

a neurological disability known to degrade manipulation, tend to have larger (i.e., weaker)

phase portraits compared to their healthy older counterparts, and that both of them are larger

than young adults as measured by the volume and sum of edge lengths of the convex hulls.

What is interesting, however, is that when compared to healthy age-matched older adults, we

find significant differences in the TL and IQR features of the phase portraits in older adults

with PD. This allows us to go beyond prior work [5] and disambiguate between the effects of

age and PD during manipulation at the edge of instability at the level of the nature and structure
of the neural controller.

Let us consider the differences between older adults with and without PD in the detail that

our methodology allows. We find statistically significant differences in three features (Table 1,

Fig 10, bottom): TL (p = 0.0046), SE (p = 0.0035), and IQR (p = 0.0013). As mentioned above,

a significant difference in the TL feature, in particular, highlights a more chaotic behavior

when PD is present, due to the increase in the stochastic component introduced by the disrup-

tion of neural control. Furthermore, the significant statistical differences in SE and IQR and

the higher residuals for the ellipsoid fit (Fig 10, top right) speak to the more distributed and

scattered nature of the phase portraits of the participants with PD. These differences are fur-

ther illustrated in the comparison of the representative distributions of points (Fig 13), which

provides information about the irregularity in the points distribution. The higher density of

points around the centroid of the attractor demonstrated by the healthy subjects (both young

and older adults) indicates less variability in the point distribution, compared to participants

with PD who demonstrate lower densities near the attractor center.

In terms of the shape of the fitted ellipsoid (Fig 12), we find that healthy individuals, both

young and older, exhibit almost spherical shapes that we attribute to the presence of a stronger

attractor, with most trajectories residing inside the sphere. Their attractor is, in fact, capable of

attracting points belonging to a space that is more spherical, thus its comprising points belong

to a relatively symmetric 3-D space. This property is partially lost in older adults with PD,

likely as a result of the neurological condition (Fig 12). The more chaotic behavior of the phase

portraits coupled with the presence of a weaker attractor can be interpreted as reduced con-

trollability during low force dexterous tasks due to the disruption of neural control associated

with PD. Interestingly, this is in opposition to published results during static force exertion

tasks, where the healthy individuals seem to display more variability than those with PD [20–

22]. This may speak to the fact that our dynamic force production tasks at the edge of instabil-

ity are more representative of ADLs than static tasks.

Clinical implications and further developments

This work presents the application of attractor reconstruction as a tool to assess the differences

in neural control during a dynamic manipulation task at low force magnitudes. As such, this
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study fills the gap with previous works [20–22] featuring analysis during static force production.

We strongly believe in the importance of emphasizing dynamic manipulation because it repre-

sents a better approximation of ADLs, thus it gives a better insight for the treatment and the

assessment of clinical conditions, such as PD.

This method successfully disambiguates the differences on the attractors of the biological

dynamical system in young adults, older adults, and older adults with PD, highlighting the

individual effects of aging and neurological condition (PD). The effect of healthy aging is that

of a mild weakening of the attractor/control action, introducing more variability in the distri-

bution of the points in the phase portrait. However, the neurological condition (PD) reveals

itself as a partial loss of the full three-dimensional volume of the attractor, as a symptom of a

weaker capability of the control action to drive points in the phase space towards the attractor

itself. Both aging and PD contribute to an increasing level of chaos, suggesting that, from a

nonlinear dynamic system viewpoint, an increasing level of variability in the forces is a symp-

tom of weaker neural control.

The study of the dynamical stabilization of objects during the manipulation has pointed to

activity of frontal-parietal-cerebellar networks. Those studies indicate that increasing the dex-

terity requirements of the task is associated with selective increases in the activity of the basal

ganglia, which are active during the sustained spring compression of the SD test [39]. This

study now shows that PD is a condition that changes the nature of the neural control strategy

for dexterous manipulation. Therefore, further work is necessary to establish the specific

mechanisms by which the nature and structure of neural control changes with the neurological

deficits found in PD. However, we can speculate that our findings are compatible with other

studies [44], where it is hypothesized that the PD-related motor deficit stems from a reduction

of the tonic levels of dopamine in midbrain neurons. This reduction results in dysfunctional

basal ganglia-thalamocortical circuits, characterized by abnormal neuronal firing patterns and

pathologically synchronized oscillatory activity [45]. Such pathologically enhanced synchroni-

zation has been hypothesized to“lock-in” the motor systems, with the effect of preventing an

appropriate recruitment of motor neurons for actions that are voluntary [46, 47]. The particu-

lar spatial distribution of the attractor points for subjects diagnosed with PD highlights deficits

in their neural control action to efficiently drive the system state into the phase space region

near the attractor fixed point, but rather to keep the system dynamics in larger limit cycles.

Thus our study presents a means to deepen our understanding of the neural control of dexter-

ous function, presenting a method that can be generalized to leg function in PD to provide a

dynamical-systems characterization of the known deficits in neural control of dynamic foot-

ground interactions [8]. This relatively small study represents a proof-of-principle, which now

motivates and justifies the effort needed to conduct a larger study to actually determine the

actual physiological mechanisms and how they are tied to the proposed measurements. A

series of studies will thus follow in which advanced neurophysiological recordings will be inte-

grated in the presented methodology to help us understand what happens at a neural level dur-

ing the task execution.

There is a growing demand to understand the contribution of the natural aging process to

the onset, severity, and progression of PD. In fact, several characteristics of PD coincide with

those also linked to aging (i.e., changes in synapse and mitochondrial structure) [48], making

the clinical assessment of the neurological condition a challenging task [49]. We believe that

our results here, and others over the lifespan [4, 8, 40], open important opportunities to disam-

biguate the effects of natural aging from those of particular pathologies, as well as exploring

sex-related differences and developing rehabilitation and treatment paradigms. Our results

offer in facts an easy and portable way that can be used also to qualitatively assess the onset of

clinical conditions. As an example, we used k-means clustering on the averaged TL and IQR
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data from all participants and chose the optimal number of clusters, in this case three, using

the jump method. Fig 14 shows the results of the cluster analysis. Healthy young and older

adults are grouped in in the first (green) cluster and participants with PD were primarily

grouped in the second (red) cluster, although one was grouped in the third (blue) cluster.

Future studies will explore is the relationship between the severity of the PD symptoms accord-

ing to the Unified Parkinson’s Disease Rating Scale (UPDRS) score and the features of the

reconstructed attractors.

In summary, in this study we investigated the dynamics seen while subjects use fingertip

forces of low magnitudes to compress a compliant and slender spring at the edge of instability.

In particular, we explored whether these dynamics differ among healthy young adults, healthy

older adults and older adults diagnosed and being treated for PD. We find distinct effects of

aging and PD on the dynamics at the edge of instability. Importantly, these nonlinear methods

are designed to characterize the latent dynamical “attractor”, and therefore our results strongly

suggest differences in the capabilities of the underlying neuromuscular controller. Given that

Fig 14. Automatic clustering of participants. The data points from every participants, averaging the three trials, were clustered using

the k-means approach. The considered variables were TL and IQR. The optimal number of clusters was chosen to be three using the

jump method. Healthy subjects were clustered in the first clustered, despite the age. Subjects affected by PD were mainly clustered in the

second and third clusters.

doi:10.1371/journal.pone.0172025.g014
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attractor reconstruction techniques infer properties of the underlying neuromuscular control-

ler, this work goes beyond prior reports of statistical differences in the mean, variance and fre-

quency content of stabilizing fingertip forces across these populations [5, 8]. Therefore, this

work motivates and justifies future research aimed at identifying the neurophysiological mech-

anisms responsible for differences in the neuromuscular control of dynamic manipulation

associated with aging and PD.

Supporting information
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